Promremont34.ru

Авто мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Чему равна работа совершаемая двигателем автомобиля

Пусть на тело действует постоянная сила и тело, двигаясь прямолинейно по горизонтальной поерхности, совершило перемещение . Сила не обязательно является непосредственной причиной перемещения (так, сила тяжести не является непосредственной причиной перемещения шкафа, который передвигают по комнате).

Предположим сначала, что векторы силы и перемещения сонаправлены (рис. 1 ; остальные силы, действующие на тело, не указаны)

Рис. 1.A=Fs

В этом простейшем случае работа определяется как произведение модуля силы на модуль перемещения:

Единицей измерения работы служит джоуль (Дж): Дж=Н м. Таким образом, если под действием силы 1 Н тело перемещается на 1 м, то сила совершает работу 1 Дж.

Работа силы, перпендикулярной перемещению, по определению считается равной нулю. Так, в данном случае сила тяжести и сила реакции опоры не совершают работы.

Пусть теперь вектор силы образует с вектором перемещения острый угол (рис. 2 ).

Рис. 2. A=Fs cos

Разложим силу на две составляющие: (параллельную перемещению) и (перпендикулярную перемещению). Работу совершает только . Поэтому для работы силы получаем:

Если вектор силы образует с вектором перемещения тупой угол , то работа по-прежнему определяется формулой (2) . В этом случае работа оказывается отрицательной.

Например, работа силы трения скольжения, действующей на тело в рассмотренных ситуациях, будет отрицательной, так как сила трения направлена противоположно перемещению. В этом случае имеем:

, и для работы силы трения получаем:

где — масса тела, — коэффициент трения между телом и опорой.

Соотношение (2) означает, что работа является скалярным произведением векторов силы и перемещения:

Это позволяет вычислять работу через координаты данных векторов:

Пусть на тело действуют несколько сил и — равнодействующая этих сил. Для работы силы имеем:

где — работы сил . Итак, работа равнодействующей приложенных к телу сил равна сумме работ каждой силы в отдельности.

Механическая работа. Мощность

1. Определение работы

С механической работой (работой силы) вы уже знакомы из курса физики основной школы. Напомним приведенное там определение механической работы для следующих случаев.

Если сила направлена так же, как перемещение тела, то работа силы


В этом случае работа силы положительна.

Если сила направлена противоположно перемещению тела, то работа силы


В этом случае работа силы отрицательна.

Если сила f_vec направлена перпендикулярно перемещению s_vec тела, то работа силы равна нулю:

Работа – скалярная величина. Единицу работы называют джоуль (обозначают: Дж) в честь английского ученого Джеймса Джоуля, сыгравшего важную роль в открытии закона сохранения энергии. Из формулы (1) следует:

? 1. Брусок массой 0,5 кг переместили по столу на 2 м, прикладывая к нему силу упругости, равную 4 Н (рис. 28.1). Коэффициент трения между бруском и столом равен 0,2. Чему равна работа действующей на брусок:
а) силы тяжести m?
б) силы нормальной реакции ?
в) силы упругости ?
г) силы трения скольжения тр?


Суммарную работу нескольких сил, действующих на тело, можно найти двумя способами:
1. Найти работу каждой силы и сложить эти работы с учетом знаков.
2. Найти равнодействующую всех приложенных к телу сил и вычислить работу равнодействующей.

Оба способа приводят к одному и тому же результату. Чтобы убедиться в этом, вернитесь к предыдущему заданию и ответьте на вопросы задания 2.

? 2. Чему равна:
а) сумма работ всех действующих на брусок сил?
б) равнодействующая всех действующих на брусок сил?
в) работа равнодействующей? В общем случае (когда сила f_vec направлена под произвольным углом к перемещению s_vec) определение работы силы таково.

Работа A постоянной силы равна произведению модуля силы F на модуль перемещения s и на косинус угла α между направлением силы и направлением перемещения:

? 3. Покажите, что из общего определения работы следуют к выводы, показанные на следующей схеме. Сформулируйте их словесно и запишите в тетрадь.

? 4. К находящемуся на столе бруску приложена сила, модуль которой 10 Н. Чему равен угол между этой силой и перемещением бруска, если при перемещении бруска по столу на 60 см эта сила совершила работу: а) 3 Дж; б) –3 Дж; в) –3 Дж; г) –6 Дж? Сделайте пояснительные чертежи.

2. Работа силы тяжести

Пусть тело массой m движется вертикально от начальной высоты hн до конечной высоты hк.

Если тело движется вниз (hн > hк, рис. 28.2, а), направление перемещения совпадает с направлением силы тяжести, поэтому работа силы тяжести положительна. Если же тело движется вверх (hн
В обоих случаях работа силы тяжести

Найдем теперь работу силы тяжести при движении под углом к вертикали.

? 5. Небольшой брусок массой m соскользнул вдоль наклонной плоскости длиной s и высотой h (рис. 28.3). Наклонная плоскость составляет угол α с вертикалью.


а) Чему равен угол между направлением силы тяжести и направлением перемещения бруска? Сделайте пояснительный чертеж.
б) Выразите работу силы тяжести через m, g, s, α.
в) Выразите s через h и α.
г) Выразите работу силы тяжести через m, g, h.
д) Чему равна работа силы тяжести при движении бруска вдоль всей этой же плоскости вверх?

Выполнив это задание, вы убедились, что работа силы тяжести выражается формулой (5) и тогда, когда тело движется под углом к вертикали – как вниз, так и вверх.

Но тогда формула (5) для работы силы тяжести справедлива при движении тела по любой траектории, потому что любую траекторию (рис. 28.4, а) можно представить как совокупность малых «наклонных плоскостей» (рис. 28.4, б).

Таким образом,
работа силы тяжести при движении но любой траектории выражается формулой

где hн – начальная высота тела, hк – его конечная высота.
Работа силы тяжести не зависит от формы траектории.

Например, работа силы тяжести при перемещении тела из точки A в точку B (рис. 28.5) по траектории 1, 2 или 3 одинакова. Отсюда, в частности, следует, что рибота силы тяжести при перемещении по замкнутой траектории (когда тело возвращается в исходную точку) равна нулю.

Читать еще:  Kia soul какое масло в двигатель

? 6. Шар массой m, висящий на нити длиной l, отклонили на 90º, держа нить натянутой, и отпустили без толчка.
а) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия (рис. 28.6)?
б) Чему равна работа силы упругости нити за то же время?
в) Чему равна работа равнодействующей сил, приложенных к шару, за то же время?

3. Работа силы упругости

Когда пружина возвращается в недеформированное состояние, сила упругости совершает всегда положительную работу: ее направление совпадает с направлением перемещения (рис. 28.7).

Найдем работу силы упругости .
Модуль этой силы связан с модулем деформации x соотношением (см. § 15)

Работу такой силы можно найти графически.

Заметим сначала, что работа постоянной силы численно равна площади прямоугольника под графиком зависимости силы от перемещения (рис. 28.8).

На рисунке 28.9 изображен график зависимости F(x) для силы упругости. Разобьем мысленно все перемещение тела на столь малые промежутки, чтобы на каждом из них силу можно было считать постоянной.

Тогда работа на каждом из этих промежутков численно равна площади фигуры под соответствующим участком графика. Вся же работа равна сумме работ на этих участках.

Следовательно, и в этом случае работа численно равна площади фигуры под графиком зависимости F(x).

? 7. Используя рисунок 28.10, докажите, что

работа силы упругости при возвращении пружины в недеформированное состояние выражается формулой

? 8. Используя график на рисунке 28.11, докажите, что при изменении деформации пружины от xн до xк работа силы упругости выражается формулой

Из формулы (8) мы видим, что работа силы упругости зависит только от начальной и конечной деформации пружины, Поэтому если тело сначала деформируют, а потом оно возвращается в начальное состояние, то работа силы упругости равна нулю. Напомним, что таким же свойством обладает и работа силы тяжести.

? 9. В начальный момент растяжение пружины жесткостью 400 Н/м равно 3 см. Пружину растянули еще на 2 см.
а) Чему равна конечная деформация пружины?
б) Чему равна работа силы упругости пружины?

? 10. В начальный момент пружина жесткостью 200 Н/м растянута на 2 см, а в конечный момент она сжата на 1 см. Чему равна работа силы упругости пружины?

4. Работа силы трения

Пусть тело скользит по неподвижной опоре. Действующая на тело сила трения скольжения направлена всегда противоположно перемещению и, следовательно, работа силы трения скольжения отрицательно при любом направлении перемещения (рис. 28.12).

Поэтому если сдвинуть брусок вправо, а пегом на такое же расстояние влево, то, хотя он и вернется в начальное положение, суммарная работа силы трения скольжения не будет равна нулю. В этом состоит важнейшее отличие работы силы трения скольжения от работы силы тяжести и силы упругости. Напомним, что работа этих сил при перемещении тела по замкнутой траектории равна нулю.

? 11. Брусок массой 1 кг передвигали по столу так, что его траекторией оказался квадрат со стороной 50 см.
а) Вернулся ли брусок в начальную точку?
б) Чему равна суммарная работа действовавшей на брусок силы трения? Коэффициент трения между бруском и столом равен 0,3.

5. Мощность

Часто важна не только совершаемая работа, но и скорость совершения работы. Она характеризуется мощностью.

Мощностью P называют отношение совершенной работы A к промежутку времени t, за который эта работа совершена:

(Иногда мощность в механике обозначают буквой N, а в электродинамике – буквой P. Мы считаем более удобным одинаковое обозначение мощности.)

Единица мощности – ватт (обозначают: Вт), названная в честь английского изобретателя Джеймса Уатта. Из формулы (9) следует, что

? 12. Какую мощность развивает человек, равномерно поднимая ведро воды массой 10 кг на высоту 1 м в течение 2 с?

Часто мощность удобно выражать не через работу и время, а через силу и скорость.

Рассмотрим случай, когда сила направлена вдоль перемещения. Тогда работа силы A = Fs. Подставляя это выражение в формулу (9) для мощности, получаем:

P = (Fs)/t = F(s/t) = Fv. (10)

? 13. Автомобиль едет по горизонтальной дороге со скоростью 72 км/ч. При этом его двигатель развивает мощность 20 кВт. Чему равна сила сопротивления движению автомобиля?

Подсказка. Когда автомобиль движется по горизонтальной дороге с постоянной скоростью, сила тяги равна по модулю силе сопротивления движению автомобиля.

? 14. Сколько времени потребуется для равномерного подъема бетонного блока массой 4 т на высоту 30 м, если мощность двигателя подъемного крана 20 кВт, а КПД электродвигателя подъемного крана равен 75%?

Подсказка. КПД электродвигателя равен отношению работы по подъему груза к работе двигателя.

Дополнительные вопросы и задания

15. Мяч массой 200 г бросили с балкона высотой 10 и под углом 45º к горизонту. Достигнув в полете максимальной высоты 15 м, мяч упал на землю.
а) Чему равна работа силы тяжести при подъеме мяча?
б) Чему равна работа силы тяжести при спуске мяча?
в) Чему равна работа силы тяжести за все время полета мяча?
г) Есть ли в условии лишние данные?

16. Шар массой 0,5 кг подвешен к пружине жесткостью 250 Н/м и находится в равновесии. Шар поднимают так, чтобы пружина стала недеформированной, и отпускают без толчка.
а) На какую высоту подняли шар?
б) Чему равна работа силы тяжести за время, в течение которого шар движется к положению равновесия?
в) Чему равна работа силы упругости за время, в течение которого шар движется к положению равновесия?
г) Чему равна работа равнодействующей всех приложенных к шару сил за время, в течение которого шар движется к положению равновесия?

Читать еще:  Характеристики двигателя tsi golf

17. Санки массой 10 кг съезжают без начальной скорости со снежной горы с углом наклона α = 30º и проезжают некоторое расстояние по горизонтальной поверхности (рис. 28.13). Коэффициент трения между санками и снегом 0,1. Длина основания горы l = 15 м.

а) Чему равен модуль силы трения при движении санок по горизонтальной поверхности?
б) Чему равна работа силы трения при движении санок по горизонтальной поверхности на пути 20 м?
в) Чему равен модуль силы трения при движении санок по горе?
г) Чему равна работа силы трения при спуске санок?
д) Чему равна работа силы тяжести при спуске санок?
е) Чему равна работа равнодействующей сил, действующих на санки, при их спуске с горы?

18. Автомобиль массой 1 т движется со скоростью 50 км/ч. Двигатель развивает мощность 10 кВт. Расход бензина составляет 8 л на 100 км. Плотность бензина 750 кг/м3, а его удельная теплота сгорания 45 МДж/кг. Чему равен КПД двигателя? Есть ли в условии лишние данные?
Подсказка. КПД теплового двигателя равен отношению совершенной двигателем работы к количеству теплоты, которое выделилось при сгорании топлива.

Ход урока.

1. Вступительное слово учителя.

— Мы с вами изучили тему «Термодинамика». На сегодняшнем уроке мы с вами еще раз повторим все основные понятия и формулы этой темы , решим задачи на применении первого начала термодинамики к изопроцессам, на расчет КПД тепловых машин , а также более подробно поговорим о роли и значении тепловых машин и их широком применении.

2. Повторение основных понятий по физике (показ презентации).

Вопросы:Ответы
1. В основе термодинамики лежит понятие внутренней энергии, а что же такое внутренняя энергия?Внутренняя энергия макроскопического тела U — это физическая величина, равная сумме кинетических энергий беспорядочного движения всех молекул тела и потенциальных энергий взаимодействия всех молекул друг с другом.
2. По какой основной формуле мы можем рассчитать внутреннюю энергию идеального одноатомного газа? внутренняя энергия одноатомного идеального газа прямо пропорциональна его абсолютной температуре.
3. А если газ не одноатомный, а состоит из более сложных молекул, чем одноатомный то что изменится в этой формуле?Если газ не одноатомный, то коэффициент перед температурой будет не , а другой так как сложные молекулы не только движутся поступательно , но и вращаются.
4. Как определяется работа в термодинамике?ΔA = pΔV — Работа ΔA, совершаемая газом, определяется давлением газа и изменением его объема.
5. А что такое количество теплоты?Количество теплоты Q — это мера изменения внутренней энергии при теплообмене .
6. Напишите формулы для нахождения количества теплоты и объясните, какие величины входят в формулы.

Объясните, пожалуйста, какой формулой и когда мы будем пользоваться?

1. Q = cm (t2 – t1) – при нагревании и охлаждении тела массой m

с – удельная теплоёмкость тела

2. Q = ± r m – при испарении и конденсации;

r – удельная теплота парообразования;

3. Q = ± λ m – при плавлении и кристаллизации;

λ – удельная теплота плавления.

Ребята, не забудьте при решении задач обращать внимание на то, о какой работе идет речь: о работе газа или о работе внешних сил.

ΔU = A + Q Изменение внутренней энергии системы при переходе её из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе.

3. Углубление изученного материала по теме «Термодинамика». (слайд1)

Темы:

А) «История создания тепловых двигателей»

Б) «Воздействие тепловых двигателей на окружающую среду»

Ребята, ,на уроках мы много говорили о тепловых двигателях, рассчитывали КПД тепловых двигателей, но об истории создания этих машин ничего сказано не было. Сейчас мы с вами послушаем доклад об этом.

/Презентация на тему: «История создания тепловых машин»./

Но ребята, мы, конечно с вами знаем, какую пользу приносят нам тепловые двигатели, но не стоит забывать и о том вреде, который тепловые машины приносят окружающей среде.

/Презентация на тему: «Воздействие тепловых двигателей на окружающую среду»./

4. Решение задач на применение первого начала термодинамики к изопроцессам, на вычисление работы газа для процесса, изображенного на графике, на расчет КПД тепловых двигателей.

Решим несколько задач.

/на расчет КПД тепловых машин/

  1. В одном цикле работы теплового двигателя его рабочее тело получает от нагревателя количество теплоты 1,5 МДж. Какое количество теплоты оно отдает за цикл холодильнику, если КПД двигателя 20 %?Чему равна работа, совершаемая этим двигателем за 1 цикл?
  2. Определите работу газа в циклическом процессе, показанном на рисунке.
  3. На сколько увеличится внутренняя энергия одноатомного идеального газа в процессе изобарического расширения, если газу сообщили при этом количество теплоты 30 кДж?

5. Разгадывание кроссворда по пройденной теме, подготовленный учащимися.

С задачами вы справились хорошо, а теперь давайте немного отдохнем – поиграем. Я предлагаю вам разгадать кроссворд.

Задания на кроссворд.

  1. Процесс передачи энергии от одного тела к другому без совершения работы /(Теплообмен)/
  2. Физическая величина, которая определяется в термодинамике как произведение давления газа на изменение его объема. /(Работа)/
  3. Процесс превращения пара в жидкость. /(Конденсация)/
  4. Изопроцесс, протекающий при неизменном объёме. /(Изохорный)/
  5. Процесс, происходящий в системе без теплообмена с окружающими телами. /(Адиабатный)/
  6. Процесс превращение жидкости в пар. /(Испарение)/.
  7. Немецкий ученый, который составил одну из формулировок второго закона термодинамики. /(Клаузиус)/

По горизонтали: (выделено)

  1. Теория тепловых явлений, в которой не учитывается атомно-молекулярное строение тел.

/Кроссворд показываем в презентации/

6. Проверка знаний учащихся по теме: работа с тестом.

Ребята, вы, наверное, обратили внимание на листочки, которые у вас лежат на столе. Сейчас мы проверим свои знания по пройденной теме. Возьмите, пожалуйста, эти листочки, подпишите их и начинайте выполнять тестовые задания по порядку. Правильный ответ обведите в кружочек.

1. Над телом совершена работа внешними силами, и телу передано кол-во теплоты. Чему равно изменение внутренней энергии тела?

А) ΔU = A
Б) ΔU = Q
В) ΔU = A + Q
Г) ΔU = А — Q
Д) ΔU = Q – A

2. Идеальному газу передаётся количество теплоты таким образом, что в любой момент времени переданное количество теплоты равно работе, совершённой газом. Какой процесс осуществлен?

А) Адиабатный
Б) Изобарный
В) Изохорный
Г) Изотермический
Д) Это мог быть любой процесс
Е) Никакого процесса не было

3. Идеальный газ переходит из состояния 1 в состояние 2 в процессе, представленном на диаграмме p – V рисунка 1. Какая работа совершена в этом процессе?

А) Газ совершил работу 200 Дж.
Б) Внешние силы совершили работу над газом 200 Дж.
В) Газ совершил работу 400 Дж.
Г) Внешние силы совершили работу над газом 400 Дж.
Д) Работа равна нулю.

4. Что служит рабочим телом в двигателе автомобиля?

5. Какое максимально возможное КПД тепловой машины, использующей нагреватель с температурой 427°С и холодильник с температурой 27°С?

1. Тело получило количество теплоты и совершило работу. Чему равно изменение внутренней энергии тела?

А) ΔU = Q — A‘
Б) ΔU = A’ – Q
В) ΔU = A’ + Q
Г) ΔU = A’
Д) ΔU = Q

2. Идеальный газ передал окружающим телам кол-во теплоты таким образом, что в любой момент времени переданное количество теплоты равно изменению внутренней энергии тела. Какой процесс был осуществлен?

А) Изотермический
Б) Изохорный
В) Изобарный
Г) Адиабатный
Д) Это мог быть любой процесс
Е) Никакого процесса не было

3. Идеальный газ переходит из состояния 1 в состояние 2 в процессе, представленном на диаграмме p – V рисунка 1. Какая работа совершена в этом процессе?

А) Газ совершил работу 200 Дж.
Б) Внешние силы совершили работу над газом 200 Дж.
В) Газ совершил работу 400 Дж.
Г) Внешние силы совершили работу над газом 400 Дж.
Д) Работа равна нулю.

4. Что служит рабочим телом в реактивном двигателе самолёта?

5. Какое максимально возможное КПД тепловой машины, использующей нагреватель с температурой 527°С и холодильник с температурой 27°С?

7. Подведение итогов урока.

Итак, на сегодняшнем уроке мы ещё раз повторили с вами все определения, порешали задачи, а так же проверили свои знания по пройденной теме. Надеюсь, что с заданиями вы справились хорошо. Свои работы сдайте, к следующему уроку я их проверю и поставлю оценки в журнал.

8. Домашнее задание.

Повторение всех основных формул, определений.

Механическая работа

Работа — это скалярная алгебраическая величина, которая характеризует связь между силой и перемещением. При совпадении направления этих двух переменных она вычисляется по следующей формуле:

  • F — модуль вектора силы, которая совершает работу;
  • S — модуль вектора перемещения.

Не всегда сила, которая действует на тело, совершает работу. Например, работа силы тяжести равна нулю, если ее направление перпендикулярно перемещению тела.

Если вектор силы образует отличный от нуля угол с вектором перемещения, то для определения работы следует воспользоваться другой формулой:

α — угол между векторами силы и перемещения.

Значит, механическая работа — это произведение проекции силы на направление перемещения и модуля перемещения, или произведение проекции перемещения на направление силы и модуля этой силы.

Другие похожие показатели [ править | править код ]

Не все показатели, характеризующие эффективность энергетических процессов, соответствуют вышеприведённому описанию. Даже если они традиционно или ошибочно называются «коэффициент полезного действия», они могут иметь другие свойства, в частности, превышать 100 %.

КПД котлов [ править | править код ]

КПД котлов на органическом топливе традиционно рассчитывается по низшей теплоте сгорания; при этом предполагается, что влага продуктов сгорания покидает котёл в виде перегретого пара. В конденсационных котлах эта влага конденсируется, теплота конденсации полезно используется. При расчёте КПД по низшей теплоте сгорания он в итоге может получиться больше единицы. В данном случае корректнее было бы считать его по высшей теплоте сгорания, учитывающей теплоту конденсации пара; однако при этом показатели такого котла трудно сравнивать с данными о других установках.

Тепловые насосы и холодильные машины [ править | править код ]

Достоинством тепловых насосов как нагревательной техники является возможность получать больше теплоты, чем расходуется энергии на их работу. Холодильная машина может отвести от охлаждаемого конца больше теплоты, чем затрачивается энергии на организацию процесса.

Эффективность машин характеризует холодильный коэффициент (англоязычный аналог COP)

ε X = Q X / A >=Q_ >/A> ,

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A — затрачиваемая на этот процесс работа (или электроэнергия).

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A =Q_ /A> ,

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно: в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> ,

где T Γ > , T X >> — температуры горячего и холодного концов, K [2] . Данная величина, очевидно, может быть сколь угодно велика; хотя практически к ней трудно приблизиться, холодильный коэффициент может превосходить единицу. Это не противоречит первому началу термодинамики, поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Согласно закону сохранения энергии, работа, совершаемая двигателем, равна:

,

где Q, — количество теплоты, полученное от нагревателя. Q2 — количество теплоты, отданное холодильнику.

Коэффициентом полезного действия (КПД) теплового двигателя называется отношение рабо­ты A’, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector