Promremont34.ru

Авто мастеру
3 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что нужно чтобы запустить трехфазный двигатель

Запуск 3х фазного двигателя от 220 Вольт

Запуск 3х фазного двигателя от 220 Вольт

Часто возникает необходимость в подсобном хозяйстве подключать трехфазный электродвигатель, а есть только однофазная сеть (220 В). Ничего, дело поправимое. Только придется подключить к двигателю конденсатор, и он заработает.

Читаем подробно далее

Емкость применяемого конденсатора, зависит от мощности электродвигателя и рассчитывается по формуле

С = 66·Рном ,

где С — емкость конденсатора, мкФ, Рном — номинальная мощность электродвигателя, кВт.

То есть можно считать, что на каждые 100 Вт мощности трехфазного электродвигателя требуется около 7 мкФ электрической емкости.

Например, для электродвигателя мощностью 600 Вт нужен конденсатор емкостью 42 мкФ. Конденсатор такой емкости можно собрать из нескольких параллельно соединенных конденсаторов меньшей емкости:

Итак, суммарная емкость конденсаторов для двигателя мощностью 600 Вт должна быть не менее 42 мкФ. Необходимо помнить, что подойдут конденсаторы, рабочее напряжение которых в 1,5 раза больше напряжения в однофазной сети.

В качестве рабочих конденсаторов могут быть использованы конденсаторы типа КБГ, МБГЧ, БГТ. При отсутствии таких конденсаторов применяют и электролитические конденсаторы. В этом случае корпуса конденсаторов электролитических соединяются между собой и хорошо изолируются.

Отметим, что частота вращения трехфазного электродвигателя, работающего от однофазной сети, почти не изменяется по сравнению с частотой вращения двигателя в трехфазном режиме.

Большинство трехфазных электродвигателей подключают в однофазную сеть по схеме «треугольник» (рис. 1). Мощность, развиваемая трехфазным электродвигателем, включенным по схеме «треугольник», составляет 70-75% его номинальной мощности.

Рис 1. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник»

Трехфазный электродвигатель подключают так же по схеме «звезда» (рис. 2).

Рис. 2. Принципиальная (а) и монтажная (б) схемы подсоединения трехфазного электродвигателя в однофазную сеть по схеме «звезда»

Чтобы произвести подключение по схеме «звезда», необходимо две фазные обмотки электродвигателя подключить непосредственно в однофазную сеть (220 В), а третью — через рабочий конденсатор (Ср) к любому из двух проводов сети.

Для пуска трехфазного электродвигателя небольшой мощности обычно достаточно только рабочего конденсатора, но при мощности больше 1,5 кВт электродвигатель либо не запускается, либо очень медленно набирает обороты, поэтому необходимо применять еще пусковой конденсатор (Сп). Емкость пускового конденсатора в 2,5-3 раза больше емкости рабочего конденсатора. В качестве пусковых конденсаторов лучше всего применяют электролитические конденсаторы типаЭП или такого же типа, как и рабочие конденсаторы.

Схема подключения трехфазного электродвигателя с пусковым конденсатором Сп показана на рис. 3.

Рис. 3. Схема подсоединения трехфазного электродвигателя в однофазную сеть по схеме «треугольник» с пусковым конденсатором Сп

Нужно запомнить: пусковые конденсаторы включают только на время запуска трехфазного двигателя, подключенного к однофазной сети на 2-3 с, а затем пусковой конденсатор отключают и разряжают.

Обычно выводы статорных обмоток электродвигателей маркируют металлическими или картонными бирками с обозначением начал и концов обмоток. Если же бирок по каким-либо причинам не окажется, поступают следующим образом. Сначала определяют принадлежность проводов к отдельным фазам статорной обмотки. Для этого возьмите любой из 6 наружных выводов электродвигателя и присоедините его к какому-либо источнику питания, а второй вывод источника подсоедините к контрольной лампочке и вторым проводом от лампы поочередно прикоснитесь к оставшимся 5 выводам статорной обмотки, пока лампочка не загорится. Загорание лампочки означает, что 2 вывода принадлежат к одной фазе. Условно пометим бирками начало первого провода С1, а его конец — С4. Аналогично найдем начало и конец второй обмотки и обозначим их C2 и C5, а начало и конец третьей — СЗ и С6.

Следующим и основным этапом будет определение начала и конца статорных обмоток. Для этого воспользуемся способом подбора, который применяется для электродвигателей мощностью до 5 кВт. Соединим все начала фазных обмоток электродвигателя согласно ранее присоединенным биркам в одну точку (используя схему «звезда») и включим двигатель в однофазную сеть с использованием конденсаторов.

Если двигатель без сильного гудения сразу наберет номинальную частоту вращения, это означает, что в общую точку попали все начала или все концы обмотки. Если при включении двигатель сильно гудит и ротор не может набрать номинальную частоту вращения, то в первой обмотке поменяйте местами выводы С1 и С4. Если это не помогает, концы первой обмотки верните в первоначальное положение и теперь уже выводы C2 и С5 поменяйте местами. То же самое сделайте в отношении третьей пары, если двигатель продолжает гудеть.

При определении начал и концов фазных обмоток статора электродвигателя строго придерживайтесь правил техники безопасности. В частности, прикасаясь к зажимам статорной обмотки, провода держите только за изолированную часть. Это необходимо делать еще и потому, что электродвигатель имеет общий стальной магнитопровод и на зажимах других обмоток может появиться большое напряжение.

Для изменения направления вращения ротора трехфазного электродвигателя, включенного в однофазную сеть по схеме «треугольник» (см. рис. 1), достаточно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй фазной обмотки статора (V).

Чтобы изменить направление вращения трехфазного электродвигателя, включенного в однофазную сеть по схеме «звезда» (см. рис. 2, б), нужно третью фазную обмотку статора (W) подсоединить через конденсатор к зажиму второй обмотки (V). Направление вращения однофазного двигателя изменяют, поменяв подключение концов пусковой обмотки П1 и П2 (рис. 4).

При проверке технического состояния электродвигателей нередко можно с огорчением заметить, что после продолжительной работы появляются посторонний шум и вибрация, а ротор трудно повернуть вручную. Причиной этого может быть плохое состояние подшипников: беговые дорожки покрыты ржавчиной, глубокими царапинами и вмятинами, повреждены отдельные шарики и сепаратор. Во всех случаях необходимо детально осмотреть электродвигатель и устранить имеющиеся неисправности. При незначительном повреждении достаточно промыть подшипники бензином, смазать их, очистить корпус двигателя от грязи и пыли.

Чтобы заменить поврежденные подшипники, удалите их винтовым съемником с вала и промойте бензином место посадки подшипника. Новый подшипник нагрейте в масляной ванне до 80° С. Уприте металлическую трубу, внутренний диаметр которой немного превышает диаметр вала, во внутреннее кольцо подшипника и легкими ударами молотка по трубе насадите подшипник на вал электродвигателя. После этого заполните подшипник на 2/3 объема смазкой. Сборку производите в обратном порядке. В правильно собранном электродвигателе ротор должен вращаться без стука и вибрации.

Подключение электродвигателя с конденсатором

При подключении маломощных асинхронных электрических двигателей до 1,5 кВт, запускающихся без нагрузки, необходимо иметь только рабочий конденсатор. К нулю подключаем один его конец, другой же к третьему выходу треугольника. Чтобы изменить направление вращения мотора подключение конденсатора ведем не от нуля , а от фазы.

В случае работы двигателя сразу при запуске под нагрузкой или когда его мощность более 1,5 кВт, то для успешного запуска нужно внести в схему пусковой конденсатор, который будет включаться в работу параллельно рабочему. Он нужен для увеличения пускового толчка при старте, он станет включаться всего на несколько секунд.

Обычно пусковой конденсатор имеет кнопочное подключение, остальная же схема подключается от электрической сети через тумблер либо же через кнопку с двумя фиксирующимися положениями. Чтобы произвести запуск требуется подключить питание через тумблер или двухпозиционную кнопку, затем произвести нажатие на пусковую кнопку и удерживать ее до тех пор, пока не запустится электрический двигатель. Как только запуск произошел, отпускаем кнопку, при этом ее пружина разомкнет контакты и произведет отключение пусковой емкости.

Если необходим реверсивный запуск трехфазного двигателя в сети 220 вольт, тогда нужно будет занести в схему тумблер переключения. Он нужен для подключения одного конца рабочего конденсатора к фазе и к нулю.

Читать еще:  Что за стук в двигателе калины

В случае, если двигатель не желает запускаться либо очень медленно набирает скорость оборотов, то необходимо внести в схему пусковой конденсатор, который подключен через кнопку «Пуск». Для подключения этой кнопки на реверсивной схеме для обозначения проводов используется фиолетовый цвет. Если в реверсе нет необходимости, то со схемы выпадает кнопка вместе с проводами и пусковой правый конденсатор.

Расчет конденсаторов

Понятно, что к цепи запуска нельзя подключать первый попавшийся конденсатор. Если емкость будет больше чем нужно, электродвигатель будет греться, если меньше – не будет устойчиво работать. Существуют специальные расчеты для нахождения нужных значений.

Пример расчетов для конденсатора

I – фазный ток статора. Его лучше всего измерить клещами, либо, если нет такой возможности, можно взять значения, указанные на шильде – бирке на станине двигателя.

Емкость пускового конденсатора берется из расчета 2–3 Сраб.

Однако все равно, лучшим вариантом будет дополнительный подбор нужных емкостей экспериментальным путем. В этом поможет таблица:

По напряжению конденсаторы должны быть в 1,5 раза выше напряжения сети. Это обусловлено тем, что 220В – это действующее напряжение, но ведь на конденсатор будет воздействовать полное, амплитудное напряжение. А оно в 2 выше действующего. Это приблизительно 1,4. Несложный математический подсчет помогает увидеть: 220*1,4=308 В. Ну а если учесть, что в розетке редко бывает ровно 220, чаще всего напряжение плавает в одну и другую сторону, то нужно брать большее значение.

Трёхфазный двигатель – в однофазную сеть

Пожалуй, наиболее распространённый и простой способ подключения трехфазного электродвигателя в однофазную сеть при отсутствии питающего напряжения

380 в – это способ с применением фазосдвигающего конденсатора, через который запитывается третья обмотка электродвигателя. Перед тем, как подключать трехфазный электродвигатель в однофазную сеть убедитесь, что его обмотки соединены “треугольником” (см. рис. ниже, вариант 2), т. к. именно это соединение даст минимальные потери мощности 3х-фазного двигателя при включении его в сеть

Мощность, развиваемая трехфазным электродвигателем, включенным в однофазную сеть с такой схемой соединения обмоток может составлять до 75% его номинальной мощности. При этом частота вращения двигателя практически не отличается от его частоты при работе в трёхфазном режиме.

На рисунке показаны клеммные колодки электродвигателей и соответствующие им схемы соединения обмоток. Однако, исполнение клеммной коробки электродвигателя может отличаться от показанного ниже – вместо клеммных колодок, в коробке может располагаться два разделённых пучка проводов (по три в каждом).

Эти пучки проводов представляют собой “начала” и “концы” обмоток двигателя. Их необходимо «прозвонить», чтобы разделить обмотки друг от друга и соединить по нужной нам схеме “треугольник” – последовательно, когда конец одной обмотки соединяется с началом другой т. д (С1-С6, С2-С4, С3-С5).

При включении трёхфазного электродвигателя в однофазную сеть, в схему “треугольник” добавляются пусковой конденсатор Сп, который используется кратковременно (только для запуска) и рабочий конденсатор Ср.

В качестве кнопки SB для запуска эл. двигателя небольшой мощности (до 1,5 кВт) можно использовать обычную кнопку “ПУСК”, применяемую в цепях управления магнитных пускателей.

Для двигателей большей мощности стоит заменить её на коммутационный аппарат помощнее – напр, автомат. Единственным неудобством в этом случае будет необходимость ручного отключения конденсатора Сп автоматом после того как электродвигатель наберёт обороты.

Таким образом, в схеме реализована возможность двухступенчатого управления электродвигателем, уменьшая общую ёмкость конденсаторов при “разгоне” двигателя.

Если мощность двигателя невелика (до 1 кВт), то запустить его можно будет и без пускового конденсатора, оставив в схеме лишь рабочий конденсатор Ср.

Рассчитать ёмкость рабочего конденсатора можно формулой:

  • С раб = 4800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “треугольник”.
  • С раб = 2800 • I / U, мкФ – для двигателей, включенных в однофазную сеть с соединением обмоток “звезда”.

Это наиболее точный способ, требующий, однако, измерения тока в цепи электродвигателя. Зная номинальную мощность двигателя, для определения ёмкости рабочего конденсатора лучше воспользоваться следующей формулой:

С раб = 66·Р ном, мкФ, где Р ном – номинальная мощность двигателя.

Упростив формулу, можно сказать, что для работы трёхфазного электродвигателя в однофазной сети, ёмкость конденсатора на каждые 0,1 кВт его мощности должна составлять около 7 мкФ.

Так, для двигателя мощностью 1,1 кВт ёмкость конденсатора должна составлять 77 мкФ. Такую ёмкость можно набрать несколькими конденсаторами, соединёнными друг с другом параллельно (общая ёмкость в этом случае будет равна суммарной), используя следующие типы: МБГЧ, БГТ, КГБ с рабочим напряжением, превышающим напряжение в сети в 1,5 раза.

Рассчитав ёмкость рабочего конденсатора можно определить ёмкость пускового – она должна превышать ёмкость рабочего в 2-3 раза. Применять конденсаторы для запуска следует тех-же типов, что и рабочие, в крайнем случае и при условии очень кратковременного запуска можно применить электролитические – типов К50-3, КЭ-2, ЭГЦ-М, рассчитанных на напряжение не менее 450 в.

  1. Как подключить трёхфазный двигатель к однофазной сети.
  2. подключение двигателя 380 на 220 вольт
  3. правильный подбор конденсаторов для электродвигателя

Подключение электродвигателя 380В на 220В

Общие правила подключения электродвигателя через конденсатор.

Подключение электродвигателя 380В на 220В выполняется через конденсатор. Для такого подключения необходимо использовать бумажные (или пусковые) конденсаторы, при этом ВАЖНО чтобы номинальное напряжение конденсатора было больше либо равно напряжению сети (при этом рекомендуется что бы напряжение конденсатора было в 2 раза больше напряжения сети). Могут применяться конденсаторы следующих марок (типов):

МБГО, МБГЧ, МБГП, МБГТ, МБГВ, КБГ, БГТ, ОМБГ, K42-4, К42-19 и др.

Емкость конденсатора можно определить по формулам приведенным ниже, либо с помощью онлайн расчета емкости.

Первое, что необходимо сделать — это правильно соединить выводы обмоток электродвигателя. Как уже известно из статьи: схемы соединения обмоток электродвигателя обмотки электродвигателя можно соединить по схеме «звезда» (обозначается — Y) или по схеме «треугольник» (обозначается — Δ), при этом, как правило для подключения электродвигателя на 220В применяется схема «треугольник» , что бы определиться со схемой соединения обмоток необходимо посмотреть паспортные данные электродвигателя на прикрепленном к нему шильдике:

Запись: «Δ/ Y 220/380V» обозначает, что для подключения данного электродвигателя на 220В необходимо соединить его обмотки по схеме «треугольник», а для подключения на 380В — по схеме «звезда», как это сделать читайте здесь.

Второе, с чем необходимо определиться — это как будет производиться запуск электродвигателя, под нагрузкой (когда уже в момент запуска электродвигателя к его валу приложена нагрузка и он не может свободно вращаться) либо без нагрузки (когда вал электродвигателя в момент запуска свободно вращается, например наждак, вентилятор, циркулярная пила и т.п.).

При запуске двигателя без нагрузки применяется 1 конденсатор который называется рабочим, а при необходимости запуска двигателя под нагрузкой в схеме, помимо рабочего, дополнительно применяется 2-ой конденсатор который называется пусковым, он включается только в момент запуска.

Разберем схемы подключения электродвигателя 380 на 220 для обоих случаев:

Схемы подключения электродвигателя через конденсатор.

1) Подключение электродвигателя через конденсатор по схеме «треугольник», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «треугольником» рассчитывается по формуле:

Cр=4800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В схеме для включения электродвигателя применяется однополюсный автоматический выключатель, однако его использование необязательно, можно включать электродвигатель напрямую в сеть через розетку используя обычную штепсельную вилку или, например, включать его через обычный выключатель освещения.

Читать еще:  Чему равен холодный запуск двигателя

2) Подключение электродвигателя через конденсатор по схеме «звезда», запуск — без нагрузки:

Емкость рабочего конденсатора для подключения электродвигателя при схеме соединения обмоток «звездой» рассчитывается по формуле:

Cр=2800 * Iн/Uс ; мкф

где: Iн-номинальный ток электродвигателя в Амперах (принимается в соответствии с паспортными данными электродвигателя); Uс — напряжение сети в Вольтах.

В случае если запуск двигателя 380 на 220 Вольт происходит под нагрузкой, в схеме дополнительно должен применяться пусковой конденсатор иначе силы момента на валу электродвигателя не хватит для его раскрутки и двигатель не сможет запуститься.

Пусковой конденсатор подключается параллельно рабочему и должен включаться только в момент запуска двигателя, после того как двигатель наберет обороты его необходимо отключать.

Емкость пускового конденсатора должна быть в 2,5 — 3 раза больше рабочего.

Cп= (2,5…3) * Cр ; мкф

При данной схеме для запуска электродвигателя необходимо нажать и держать кнопку SB, после чего подать напряжение включив автоматический выключатель, как только двигатель запустится кнопку SB необходимо отпустить. В качестве кнопки так же можно использовать обычный выключатель.

Однако лучшим вариантом для подключения электродвигателя 380 на 220 является использование ПНВС-10 (пускатель нажимной с пусковым контактом):

Кнопки «пуск» в этих пускателя имеют 2 контакта один из них при отпускании кнопки «пуск» размыкается отключая пусковой конденсатор, а второй остается замкнутым и через него подается напряжение на электродвигатель через рабочий конденсатор, отключение производится кнопкой «стоп».

Реверс электродвигателя подключенного на 220 Вольт через конденсатор.

Итак, из схем приведенных выше следует, что при любом способе соединения обмоток (звезда или треугольник) в клеммной коробке двигателя остается три точки для его подключения к сети, условно: на первый вывод подключается ноль, на второй — фаза, а на третий подается фаза через конденсатор, но что делать если двигатель при запуске начал вращаться не в ту сторону в которую необходимо? Что бы изменить направление вращения двигателя подключенного через конденсатор необходимо просто переключить фазный провод с одного вывода электродвигателя на другой, а нулевой провод при этом оставить на том же выводе, т.е. условно: ноль оставить на первом выводе, фазу подать на третий, а на второй подать фазу через конденсатор.

Т.к. переключение выводов в клеммной коробке занимает определенное время, то в случае необходимости часто менять направление вращения конденсаторного электродвигателя лучше применять схему подключения через однополюсный пакетный переключатель на 2 направления:

При такой схеме в положении пакетного выключателя «0» двигатель будет отключен, а при положениях «1» и «2» запускаться по часовой либо против часовой стрелки.

Использование группы (блока) конденсаторов.

При подключении электродвигателя через конденсатор очень важно как можно точнее подобрать его емкость. Чем ближе будет значение фактической емкости конденсатора к расчетной тем более оптимальным будет сдвиг вектора напряжения относительно вектора тока, что в свою очередь даст более высокие показатели момента на валу двигателя и его КПД.

Например: согласно расчету необходимая емкость рабочего конденсатора составила 54 мкФ, при этом найти конденсатор подходящей емкости не удается, в таком случае наиболее целесообразным вариантом является использование группы параллельно соединенных конденсаторов (конденсаторного блока).

Как известно, при параллельном соединении конденсаторов их емкость суммируется, таким образом, что бы получить нужные нам 54 мкФ можно использовать 2 параллельно соединенных конденсатора — на 40 и на 14 мкФ (40+14=54), либо любое другое количество конденсаторов суммарная емкость которых будет давать нужное значение, например 30, 20 и 4 мкФ:

Примечание: Все конденсаторы в группе должны быть одного типа, иметь одинаковое номинальное напряжение и частоту.

Подробнее о схемах подключения конденсаторов и расчета их характеристик читайте в статье: Схемы соединения конденсаторов — расчет емкости.

Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Пульсирующее магнитное поле электродвигателя.

А если наш трёхфазный электродвигатель двумя выводами подключить к линии однофазного переменного тока, то вращающего магнитного поля в статоре образовываться не будет.

Нет. Магнитное поле всё-таки в нём появляется, но оно является результатом сложения двух магнитных полей, которые вращаются в статоре в противоположные стороны и с одинаковым числом оборотов. В данном случае это поле пульсирующее и оно никак не сдвинет ротор электродвигателя с места, разве что Вы не придадите ему начальное вращение.

Ток потребления в данном случае максимален и приравнивается к току короткого замыкания подобного трансформатора с приближёнными характеристиками к обмоткам электродвигателя.

Другими словами могу сказать, если в подобном пульсирующем электромагнитном поле статора асинхронного двигателя будет находится короткозамкнутый ротор, то оба поля, прямое и обратное, будут стараться повернуть ротор в свою сторону, а в данном случае эти стороны противоположны, и неподвижный ротор не может сам начать вращение. А так как эти электромагнитные поля создают свои моменты, которые компенсируют друг друга, то непосредственно сам пусковой момент такого асинхронного электродвигателя будет равен нулю.

Значит, что бы запустить трёхфазный электродвигатель от однофазной сети, необходимо что бы токи в его обмотках не были симметричными и активная мощность по фазам распределялась неравномерно. То есть подключить к электродвигателю некое электрическое устройство, которое сместило бы фазы токов, что вызовет их несимметрию и в статоре электродвигателя образуется вращающее магнитное поле. Ротор начнёт вращаться.

Механический запуск электродвигателя.

Иногда у некоторых умельцев в быту имеются установки, на которых установлены трёхфазные электродвигатели, запускаемые в работу от однофазной сети раскручиванием вала в ручную.

Предварительно на вал отключенного электродвигателя наматывают прочный шнур. Для запуска электродвигателя этим шнуром раскручивают его ротор, затем сразу на обмотки статора подают электрическое напряжение. Как только электродвигатель войдёт в режим холостого хода, на его вал подают нагрузку.

Электродвигатель в таких установках может закрепляться как на подвижной платформе, так и жёстко. Нагружают электродвигатель плавным опусканием платформы, на которой установлен двигатель и под действием силы тяжести(вес электродвигателя) шкив вала электродвигателя плотно сцепляется с ремнём, который передаёт вращающий момент далее.

Когда электродвигатель установлен жёстко, то для передачи крутящего момента используют натяжной ролик или натяжной шкив. После запуска электродвигателя плавно натягивают ремень между шкивом вала электродвигателя и шкивом рабочей установки.

Можно использовать вариатор, центробежную муфту сцепления, но конструкция в таком случае усложнится, а нам нужно как проще.

В таких случаях можно сказать, что при включенном в сеть электродвигателе раскручиванием ротора мы смещаем фазы токов ротора относительно фаз токов статора, уменьшаем скольжение и тормозящий момент двигателя. Вращающий момент увеличивается и электродвигатель плавно, но уверенно запускается.

Данный метод очень прост, но неудобен. Применяют его для электродвигателей небольшой мощности и запуска без нагрузки на валу. Есть двигатели, которые легко можно запустить ‘от руки’.

Но наш быт настолько разнообразен, что не обходится без какого-либо электрического аппарата, агрегата или устройства, в котором используются электродвигатели и заметьте без всяких там шнуров для их запуска.

Если электродвигатель асинхронный, то для его запуска всегда используют электрический фазосдвигающий элемент, либо применяют расщепление полюсов для создания пускового момента.

Что такое расщепление полюсов.

В электроприборах или аппаратах небольших по размеру или малой производительности и небольшой электрической мощности применяют однофазные электродвигатели со средней мощностью около 100wt. В электроаппаратах старого выпуска применялись однофазные конденсаторные электродвигатели( магнитофоны, проигрыватели, мясорубки и др.). В подобных устройствах необходим был большой пусковой момент при малой электрической мощности и при малом габарите электрического аппарата.

Читать еще:  Daimler что за двигатель

А вот в аппаратах, где не было необходимости хорошего момента при запуске и не предъявлялись требования к скольжению использовались однофазные электродвигатели с расщеплёнными полюсами(вентиляторы бытовые, электрополотенце, фены). Наверное, замечали как плавно запускались электродвигатели таких устройств.

Ротор у таких электродвигателей короткозамкнутый, обмотка статора разделена на две части, расположенные напротив друг друга. Полюса статора, на которых размещены обмотки, разрезаны на две части, на одной из которых уложен короткозамкнутый виток. Для чего?

В момент подачи напряжения на обмотку статора, образующееся магнитное поле охватывает короткозамкнутый виток, в котором индуцируется электрический ток большой величины. А так как в витке есть электрический ток, то он создаёт своё магнитное поле, но сдвинутое по фазе от основного поля статора электродвигателя. Что получается?

Та часть статора, на котором размещён виток имеет своё магнитное поле, которое не совпадает по фазе с основным полем и как следствие, ослабляет в своей части поле второй половины статора. И получается, что взаимодействие двух магнитных потоков полюсов каждого статора создают направленное вращающее магнитное поле. Правда, оно не круговое, а больше похоже на эллипс. Для нас это не так уж и важно. Электродвигатель начинает раскручиваться медленно, но уверенно.

Малый пусковой момент — плавный запуск; два полюса на статоре — частота вращения ротора электродвигателя близка к максимально возможной для асинхронных электродвигателей с короткозамкнутым ротором(

Подключение электродвигателя через конденсатор: расчет и схема

Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов. Задача, которая стоит перед нами в этой статье: подключить трехфазный двигатель к однофазному питанию используя схему с конденсаторами. Для этого будет представлена схема и формулы для выбора значения емкостей конденсаторов.

Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.

Коротенько про трехфазные асинхронные электродвигатели

Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.

Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).

Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.

Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и при подключении электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.

работа трехфазного электродвигателя без одной фазы при постоянной нагрузке

Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.

А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.

почему для пуска от однофазной сети используют именно конденсаторы

Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.

На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.

Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.

А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.

Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.

как подключить электродвигатель через конденсатор

Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.

Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.

конденсаторы для запуска электродвигателя

Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.

Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше расчет емкости конденсаторов осуществляется по двум формулам:

Рабочая емкость = 2800*Iном.эд/Uсети

Рабочая емкость = 4800*Iном/Uсети

Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.

В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(

220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:

Например, напряжение сети

220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.

Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.

Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.

2020 Помегерим! — электрика и электроэнергетика

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector