Promremont34.ru

Авто мастеру
2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что нужно для работы теплового двигателя

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Принцип действия тепловых двигателей. КПД»

В восьмом классе мы уже затрагивали тему тепловых двигателей. Напомним, что тепловым двигателем называется устройство, в котором внутренняя энергия топлива преобразуется в механическую энергию.

Для примера рассмотрим газ, находящийся в цилиндре под поршнем. Очевидно, что для того, чтобы привести поршень в движение, необходима разность давления по обе стороны поршня. В тепловых двигателях эта разность достигается путем повышения температуры газа. Нагретый газ обладает достаточно большой внутренней энергией и, расширяясь, совершает работу.

Однако, по мере расширения газ охлаждается, теряя свою внутреннюю энергию. Конечно, для нормальной работы двигателя необходима цикличность. То есть, после совершения работы, газ необходимо перевести в первоначальное состояние.

Итак, принципиальная схема работы теплового двигателя такова: от нагревателя рабочему телу (то есть газу) передается некоторое количество теплоты.

Под этим подразумевается сжигание топлива, в результате которого температура газа повышается на сотни градусов. Внутренняя энергия газа увеличивается и, за счет неё он совершает работу до тех пор, пока не охладится до температуры холодильника (роль холодильника, как правило, выполняет окружающая среда). Очевидно, что газ не может потерять всю свою внутреннюю энергию (если только не охладится до абсолютного нуля). Поэтому, некоторое количество теплоты будет передано холодильнику.

Важными характеристиками теплового двигателя являются следующие величины: количество теплоты, полученное от нагревателя, температура нагревателя (то есть температура образовавшегося газа), температура холодильника, количество теплоты, переданное холодильнику и полезная работа. Полезная работа определяется как разность между количеством теплоты, полученным от нагревателя и количеством теплоты, отданном холодильнику:

Конечно же, любой двигатель характеризуется такой величиной как коэффициент полезного действия. Для теплового двигателя коэффициент полезного действия равен отношению совершенной двигателем работы к количеству теплоты, полученному от нагревателя:

Если мы подставим в это уравнение выражение для полезной работы, то убедимся, что КПД теплового двигателя не может быть больше единицы (то есть не может превышать 100%):

Для наглядности мы можем изобразить графически работу теплового двигателя.

Законы термодинамики позволяют вычислить максимальный возможный КПД для данного теплового двигателя. Впервые это сделал ученый и инженер Сади Карно. Карно справедливо рассудил, что максимальный КПД будет у идеализированной тепловой машины. В этой тепловой машине рабочим телом был идеальный газ, а цикл состоял из двух изотерм и двух адиабат:

Таким образом, цикл Карно описывает максимальную возможную работу газа с минимальными потерями энергии. Итак, максимальный возможный КПД данной тепловой машины определяется отношением разности температуры нагревателя и температуры холодильника к температуре нагревателя:

Необходимо отметить, что в данном уравнении следует использовать абсолютную температурную шкалу. Как видно из формулы, и этот КПД не может быть больше единицы, если только температура холодильника не равна абсолютному нулю. Исходя из всего выше перечисленного, мы можем заключить следующее: КПД любого теплового двигателя не может превышать КПД идеального теплового двигателя.

Примеры решения задач.

Задача 1. Температура холодильника равна 20 ℃. Какова должна быть температура нагревателя, чтобы стало возможным достичь значения КПД теплового двигателя, равное 85%?

Задача 2. Двигатель внутреннего сгорания совершил полезную работу, равную 45 МДж. Если КПД этого двигателя составляет 55%, то, сколько литров бензина было израсходовано на совершение данной работы? Плотность бензина равна 710 кг/м 𝟑 .

Обратимые тепловые двигатели Филипса и Карно с реальным газом в качестве рабочего тела

  • Аннотация
  • Об авторе
  • Список литературы
  • Cited By

Аннотация

Ключевые слова

Об авторе

Список литературы

1. Киселѐв В.Г. Парадокс Гиббса и его решение // Известия высших учебных заведений. Проблемы энергетики.2016. № 11-12. С. 129–137.

2. Киселѐв В.Г. Изотермическое расширение идеального газа и химическое сродство // Известия высших учебных заведений. Проблемы энергетики. 2017. Т.19. № 11-12. С. 142–151.

3. Киселѐв В.Г. Тепловые машины Филипса и Карно с точки зрения теории термодинамических потенциалов // Известия высших учебных заведений. Проблемы энергетики. 2018. Т.20. № 9-10. С. 154–165.

4. ЭверетД. Введение в химическую термодинамику: монография. М.: «Издательство иностранной литературы», 1963. 279 с.

5. Пригожин И., Кондепуди Д. Современная термодинамика. От тепловых двигателей до диссипативных структур: монография // М: Мир, 2002. 461 с.

6. Исаев С. И. Курс химической термодинамики. М.: «Машиностроение» 1975. 255 с.

7. Измайлов Н.А. Электрохимия растворов: монография. М.: «Химия», 1976. 488 с.

8. Карапетьянц М.Х. Химическая термодинамика: монография. М.–Л.: «Государственное научно-техническое издательство химической литературы», 1953. 611 с.

9. Антропов Л.И. Теоретическая электрохимия: монография. М.: «Высшая школа», 1975. 568 с.

10. Gibbs J. Willard. The Collected Works. N.Y. London–Toronto: Longmans, Green and Co. 1928. Т. 1. XXVIII. pp.434.

11. Thomson W., Mathematical and Physical Papers. 1882. Article «On the dynamical theory of heat» 1851. V1. pp. 174–232.

12. Ihnatovych V. Study of the possibility of eliminating the Gibbs paradox within the framework of classical thermodynamics. Preprint at http://arxiv.org/pdf/1306.5737. 2014.

13. Ihnatovych V. The logical foundations of Gibbs’ paradox in classical thermodynamics. Preprint at http://arxiv.org/pdf/1305.0742. 2014.

14. Ihnatovych V On the incorrectness of the proof of the Gibbs theorem on the entropy of a mixture of ideal gases, which was given by J. W. Gibbs. Preprint at http://arxiv.org/pdf/1804.08721.2018.

15. Ihnatovych V. Explanation of the Gibbs paradox. URL: https://zenodo.org/record/2908285.

16. Ihnatovych Volodymyr. Explanation of the Gibbs paradox. Zenodo.2019, May 18. http://doi.org/10.5281/zenodo.2908285.

Для цитирования:

Киселёв В.Г. Обратимые тепловые двигатели Филипса и Карно с реальным газом в качестве рабочего тела. Известия высших учебных заведений. ПРОБЛЕМЫ ЭНЕРГЕТИКИ. 2019;21(4):20-32. https://doi.org/10.30724/1998-9903-2019-21-4-20-32

For citation:

Kiselev V.G. Reversible Carnot and Philips heat engines with a real gas as a working body. Power engineering: research, equipment, technology. 2019;21(4):20-32. (In Russ.) https://doi.org/10.30724/1998-9903-2019-21-4-20-32


Контент доступен под лицензией Creative Commons Attribution 4.0 License.

Рабочее тело теплового двигателя

Для совершения полезной работы необходимо создать движение под действием силы. Такое движение в тепловом двигателе совершается при расширении порции газа, называемого рабочим телом. Во всех тепловых двигателях рабочее тело получает тепло от Нагревателя, затем расширяется, совершая работу. При расширении оно охлаждается и отдает тепло Холодильнику.

Для всех применяемых тепловых двигателей Холодильником является окружающая среда. Нагреватели же зависят от типа двигателя. Для парового двигателя Нагревателем является топка парового котла. Для двигателя внутреннего сгорания (ДВС) Нагревателем является само рабочее тело – горючая газовая смесь.

Рис. 2. Схема теплового двигателя.

Велицко В.В.

Все применяемые в настоящее время термодинамические циклы, по которым работают серийно производимые тепловые двигатели, в частности – двигатели внутреннего сгорания (ДВС), требуют предварительного сжатия рабочего тела или горючей смести, перед тем, как к ним будет подведена или выделена из них энергия, в камере сгорания или, например, в паровом котле. Указанный принцип работы тепловых двигателей реализован в двигателях, работающих по таким циклам, как цикл Отто, циклы Дизеля или Тринклера, цикл Брайтона, по которому работают газотурбинные установки (ГТУ), или цикл Ренкина, по которому работают паросиловые установки. Недостатком данных циклов является то, что необходимая максимальная степень расширения продуктов или иного рабочего тела сгорания в процессе совершения работы, требует предварительного повышения давления, т.к. без этого КПД такого двигателя будет сопоставим с КПД двигателя Ленуара, работавшего без предварительного сжатия топливовоздушной смеси.

Читать еще:  Эксплуатация двигателя на высоких оборотах

Данная проблема отчасти нашла решение в т.н. циклах с внутренними охлаждением – циклах Миллера и Аткинсона, степень расширения продуктов сгорания в которых превосходит степень предварительного сжатия топливовоздушной смеси. Однако данные двигатели (поршневые двигатели внутреннего сгорания – ПДВС) так и не смогли решить проблему эффективной теплоутилизации, т.к. отходящие газы ПДВС имеют высокую температуру, составляющую 400°С и более.

Наиболее остро проблема рекуперации энергии стоит в газотурбинных установках, которые, в связи с высокими коэффициентами избытка воздуха, составляющим 3 и более, требуют крайне эффективной утилизации тепла отходящих газов посредством рекуперативного теплообменника на подогрев воздуха за компрессором перед подачей воздуха в камеру сгорания. Это позволяет минимизировать расход горючего в камере сгорания двигателя.

Однако принципиально нерешенной является задача полной утилизации тепла отходящих газов по той причине, что в процессе сжатия как в компрессоре ГТУ, так и в цилиндре ПДВС, воздух нагревается до температуры в сотни градусов, что позволяет даже в противоточном рекуперативном теплообменнике передать свежему рабочему телу незначительную часть тепла отходящих газов. Вследствие этого мощные установки, такие как стационарные ГТУ или ПДВС комплектуются дополнительными паросиловыми ступенями, в которых используются различные теплоносители, начиная с воды и заканчивая фреонами, что позволяет, в соответствии с циклом Карно, снизить температуру отвода тепла вовне, а следовательно – увеличить общий механический КПД энергетического комплекса. Попытки объявить, что существенную роль играет коэффициент полезного использования (КПИ) топлива, составляющий в ДВС, в частности в ГТУ и ПДВС, до 90% и состоящий из механического КПД, составляющего до 40% у ГТУ и до 55% у ПДВС плюс КПД системы теплоутилизации, не обоснованы, т.к. в первую очередь важен именно механический КПД системы.

Например, в условиях России, разница между стоимостью автономно выработанной электроэнергии и теплом составляет порядка десяти крат, тогда как, например, в условиях Евросоюза, указанная разница трѐхкратно выше в пользу электроэнергии. В данной связи видно, что стоимость выработанной тепловой энергии, хотя и необходимо учитывать, но еѐ стоимость не является существенной, а для условий России – и пренебрежимо мала к стоимости выработанной механической мощности или выработанной электроэнергии.

Достигнутый механический КПД в 55% для тепловых двигателей простого цикла, какими являются как ПДВС, так и ГТУ является практически предельным и не может быть существенно улучшен с сохранение существующих термодинамических циклов. Некоторое улучшение КПД, как указано выше, путѐм усложнения эксплуатации и увеличения стоимости основных фондов возможен в бинарном цикле (парогазовый цикл) или в монарном цикле (впрыск воды в продукты сгорания), однако указанные циклы практически неприемлемы для маломощных стационарных и транспортных установок.

Решение слоившейся тупиковой ситуации с ростом КПД тепловых двигателей лежит в сфере разработки тепловых циклов двигателей, не требующих предварительного сжатия рабочего тела, что позволит эффективно утилизировать, практически все тепло отходящих газов и возвращать его в тепловой двигатель. Для решения данной задачи разработаны тепловые двигатели с конвейерными регенеративными установками, теоретически позволяющие достигать КПД, вплотную приближающийся к КПД цикла Карно для имеющихся условий, что позволяет получать максимальный эксергетический коэффициент. Недостатком предложенных регенеративных циклов является техническая нереализуемость, связанная как со сложностью изготовления, так и с большим числом нерешѐнных проблем, в частности – с невозможностью осуществлять эффективный газообмен в связи с отсутствием предварительного сжатия рабочего тела.

Предложенное решение по созданию бескомпрессионного ДВС представляет собой двигатель, в значительной степени базирующийся на стандартном оборудовании, таком как газовые турбины или модернизированные ПДВС. Принцип работы ДВС базируется на изменении энтальпии рабочего тела при глубокой рекуперации тепла, при которых не требуется предварительное сжатие рабочего тела, что позволяет снять ограничение КПД двигателя, обусловленное высокой температурой рабочего тела за нагнетателем (компрессором).

Предложенный двигатель реализует термодинамический цикл без предварительного сжатия рабочего тела, что позволяет при более высокой удельной массе двигателя, составляющей в зависимости от мощности 25-30 кг/кВт, реализовывать высокую степень рекуперации тепла, позволяющую осуществлять рабочий цикл практически с неизменным КПД более 50% вне зависимости от применяемых видов топлив.

Данная технология, имея высокую степень совместимости с производимым в настоящий момент оборудованием, может быть реализована на ГТУ и паротурбинных (ПТУ) ТЭЦ, что, в зависимости от режимов работы ГТУ и ПТУ установок может позволить получить увеличение механического КПД на 2-4%. Практическое освоение предложенной технологии бескомпрессионных ДВС с применением классических компонентов современных ГТУ и ПТУ может быть реализовано в период 10-15 мес. после начала финансирования

Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей — Гипермаркет знаний. Принципы действия тепловых двигателей Кпд теплового двигателя равен что означает

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Читать еще:  Вибрация двигателя на холостых tdi

Q 2 – количество теплоты отданное холодильнику Q 2 0.

КПД теплового двигателя будет тем больше, чем выше температура нагревателя, и ниже температура холодильника.

Физика, 10 класс

Урок 25. Тепловые двигатели. КПД тепловых двигателей

Перечень вопросов, рассматриваемых на уроке:

1) Понятие теплового двигателя;

2)Устройство и принцип действия теплового двигателя;

3)КПД теплового двигателя;

Глоссарий по теме

Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.

КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.

Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.

Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.

Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).

Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)

Основная и дополнительная литература по теме урока :

1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.

2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.

Открытые электронные ресурсы по теме урока

Теоретический материал для самостоятельного изучения

Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.

Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.

Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.

Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.

Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.

Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.

В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.

В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.

Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.

Для определения эффективности работы теплового двигателя вводят понятие КПД.

Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.

Q 1 – количество теплоты полученное от нагревания

Q 2 – количество теплоты, отданное холодильнику

– работа, совершаемая двигателем за цикл.

Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.

Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле

Передача неиспользуемой части энергии холодильнику .

В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).

Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т 1 , и холодильником с температурой Т 2 , не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов

Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.

Не существует теплового двигателя, у которого КПД = 100% или 1.

Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.

Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.

Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.

Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.

Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.

Сравним эксплуатационные характеристики тепловых двигателей.

Паровой двигатель – 8%.

Паровая турбина – 40%.

Газовая турбина – 25-30%.

Двигатель внутреннего сгорания – 18-24%.

Дизельный двигатель – 40– 44%.

Реактивный двигатель – 25%.

Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.

Примеры и разбор решения заданий

1 . Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?

Полезная работа теплового двигателя формула. Тепловой двигатель

Работа, совершаемая двигателем, равна:

Впервые этот процесс был рассмотрен французским инженером и ученым Н. Л. С. Карно в 1824 г. в книге «Размышления о движущей силе огня и о машинах, способных развивать эту силу».

Читать еще:  Характеристики двигателя исузу c240

Целью исследований Карно было выяснение причин несовершенства тепловых машин того времени (они имели КПД ≤ 5 %) и поиски путей их усовершенствования.

Цикл Карно — самый эффективный из всех возможных. Его КПД максимален.

На рисунке изображены термодинамические процес-сы цикла. В процессе изотермического расширения (1-2) при температуре T 1 , работа совершается за счет измене-ния внутренней энергии нагревателя, т. е. за счет подве-дения к газу количества теплоты Q :

A 12 = Q 1 ,

Охлаждение газа перед сжатием (3-4) происходит при адиабатном расширении (2-3). Изменение внутренней энергии ΔU 23 при адиабатном процессе (Q = 0 ) полностью преобразуется в механическую работу:

A 23 = -ΔU 23 ,

Температура газа в результате адиабатического рас-ширения (2-3) понижается до температуры холодильни-ка T 2

Энциклопедичный YouTube

Математически определение КПД может быть записано в виде:

η = A Q , >,>

где А — полезная работа (энергия), а Q — затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

где Q X >> — тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A

Для тепловых насосов используют термин коэффициент трансформации

где Q Γ > — тепло конденсации, передаваемое теплоносителю; A — затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A =Q_ >+A> , отсюда для идеальной машины ε Γ = ε X + 1 =varepsilon _ >+1>

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

ε = T X T Γ − T X > over -T_ >>>> , поскольку, кроме принимаемой в расчёт энергии A (напр., электрической), в тепло Q идёт и энергия, отбираемая от холодного источника.

Тип урока: Урок изучения нового материала.

Цель урока: Разъяснить принцип действия теплового двигателя.

Образовательные: познакомить учащихся с видами тепловых двигателей, развивать умение определять КПД тепловых двигателей, раскрыть роль и значение ТД в современной цивилизации; обобщить и расширить знания учащихся по экологическим проблемам.

Развивающие: развивать внимание и речь, совершенствовать навыки работы с презентацией.

Воспитательные: воспитывать у учащихся чувство ответственности перед последующими поколениями, в связи с чем, рассмотреть вопрос о влиянии тепловых двигателей на окружающую среду.

Оборудование: компьютеры для учащихся, компьютер учителя, мультимедийный проектор, тесты (в Excel), Физика 7-11 Библиотека электронных наглядных пособий. “Кирилл и Мефодий”.

Ход урока

1. Оргмомент

2. Организация внимания учащихся

Тема нашего урока: “Тепловые двигатели”. (Слайд 1)

Сегодня мы вспомним виды тепловых двигателей, рассмотрим условия их эффективной работы, поговорим о проблемах связанных с их массовым применением. (Слайд 2)

3. Актуализация опорных знаний

Прежде чем перейти к изучению нового материала предлагаю проверить как вы к этому готовы.

– Дайте формулировку первого закона термодинамики. (Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количество теплоты, переданное системе. U=A+Q)

– Может ли газ нагреться или охладиться без теплообмена с окружающей средой? Как это происходит? (При адиабатических процессах.) (Слайд 3)

– Напишите первый закон термодинамики в следующих случаях: а) теплообмен между телами в калориметре; б) нагрев воды на спиртовке; в) нагрев тела при ударе. (а) А=0 , Q=0, U=0; б) А=0, U= Q; в) Q=0, U=А)

– На рисунке изображен цикл, совершаемый идеальным газом определенной массы. Изобразить этот цикл на графиках р(Т) и Т(р). На каких участках цикла газ выделяет теплоту и на каких – поглощает?

(На участках 3-4 и 2-3 газ выделяет некоторое количество теплоты, а на участках 1-2 и 4-1 теплота поглощается газом.) (Слайд 4)

4. Изучение нового материала

Все физические явления и законы находят применение в повседневной жизни человека. Запасы внутренней энергии в океанах и земной коре можно считать практически неограниченными. Но располагать этими запасами недостаточно. Необходимо за счет энергии уметь приводить в действие устройства, способные совершать работу. (Слайд 5)

Что является источником энергии? (различные виды топлива, энергия ветра, солнца, приливов и отливов)

Существуют различные типы машин, которые реализуют в своей работе превращение одного вида энергии в другой.

Тепловой двигатель – устройство, превращающее внутреннею энергию топлива в механическую энергию. (Слайд 6)

Рассмотрим устройство и принцип работы теплового двигателя. Тепловая машина работает циклично.

Любая тепловая машина состоит из нагревателя, рабочего тела и холодильника. (Слайд 7)

КПД замкнутого цикла (Слайд 8)

Q 1 – количество теплоты полученное от нагревания Q 1 >Q 2

Q 2 – количество теплоты отданное холодильнику Q 2

Значения КПД двигателей

Если рассмотреть температура рабочего пара на входе которой равна 800 К, а отработавшего газа — 300 К, то КПД этой машины равно 62%. В действительности же эта величина не превышает 40%. Такое понижение возникает вследствие тепловых потерь при нагревании корпуса турбин.

Наибольшее значение внутреннего сгорания не превышает 44%. Повышение этого значения — вопрос недалекого будущего. Изменение свойств материалов, топлива — это проблема, над которой работают лучшие умы человечества.

>>Физика: Принцип действия тепловых двигателей. Коэффициент полезного действия (КПД) тепловых двигателей

Запасы внутренней энергии в земной коре и океанах можно считать практически неограниченными. Но для решения практических задач располагать запасами энергии еще недостаточно. Необходимо еще уметь за счет энергии приводить в движение станки на фабриках и заводах, средства транспорта , тракторы и другие машины, вращать роторы генераторов электрического тока и т. д. Человечеству нужны двигатели — устройства, способные совершать работу. Большая часть двигателей на Земле — это тепловые двигатели . Тепловые двигатели — это устройства, превращающие внутреннюю энергию топлива в механическую.
Принципы действия тепловых двигателей. Для того чтобы двигатель совершал работу, необходима разность давлений по обе стороны поршня двигателя или лопастей турбины. Во всех тепловых двигателях эта разность давлений достигается за счет повышения температуры рабочего тела (газа) на сотни или тысячи градусов по сравнению с температурой окружающей среды. Такое повышение температуры происходит при сгорании топлива.
Одна из основных частей двигателя — сосуд, наполненный газом, с подвижным поршнем. Рабочим телом у всех тепловых двигателей является газ, который совершает работу при расширении. Обозначим начальную температуру рабочего тела (газа) через T 1 . Эту температуру в паровых турбинах или машинах приобретает пар в паровом котле. В двигателях внутреннего сгорания и газовых турбинах повышение температуры происходит при сгорании топлива внутри самого двигателя. Температуру T 1 температурой нагревателя.»
Роль холодильника. По мере совершения работы газ теряет энергию и неизбежно охлаждается до некоторой температуры T 2 , которая обычно несколько выше температуры окружающей среды. Ее называют температурой холодильника . Холодильником является атмосфера или специальные устройства для охлаждения и конденсации отработанного пара — конденсаторы . В последнем случае температура холодильника может быть немного ниже температуры атмосферы.
Таким образом, в двигателе рабочее тело при расширении не может отдать всю свою внутреннюю энергию на совершение работы. Часть теплоты неизбежно передается холодильнику (атмосфере) вместе с отработанным паром или выхлопными газами двигателей внутреннего сгорания и газовых турбин. Эта часть внутренней энергии теряется.
Тепловой двигатель совершает работу за счет внутренней энергии рабочего тела. Причем в этом процессе происходит передача теплоты от более горячих тел (нагревателя) к более холодным (холодильнику).
Принципиальная схема теплового двигателя изображена на рисунке 13.11.
Рабочее тело двигателя получает от нагревателя при сгорании топлива количество теплоты Q 1 совершает работу A ´ и передает холодильнику количество теплоты Q 2

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector