Promremont34.ru

Авто мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое асинхронный двигатель способы пуска

Эксплуатация электрических машин и аппаратуры — Пуск трехфазных асинхронных двигателей

Содержание материала

При включении трехфазных асинхронных двигателей в сеть возникает вопрос о схеме соединения фаз статорной обмотки. В коробке выводов двигателя обычно шесть концов от трех фаз, что позволяет включать двигатель на два разных напряжения. Выбор схемы соединения — звездой или треугольником фаз двигателя зависит от номинального напряжения сети и номинального напряжения двигателя.
Схему соединения нужно выбрать такую, чтобы на фазу статорной обмотки приходилось номинальное напряжение. Напряжение на фазе двигателя по схеме звезда в 1,73 раза меньше напряжения сети, а по схеме треугольник напряжение на фазе двигателя равно напряжению сети. Так, двигатель с напряжением 380/22С в по схеме звезда должен включаться в сеть с напряжением 380 в и по схеме треугольник — в сеть с напряжением 220 в.
Если выводы фаз имеют обозначения, то соединение по схеме звезда пли треугольник не представляет трудностей. Чтобы фазы соединить звездой, нужно концы С4, С5 и С6 соединить в одну точку, а к началам фаз С1, С2 и С3 подвести напряжение сети. Для соединения фаз обмотки двигателя в треугольник нужно конец одной фазы С4 соединить с началом другой фазы С2, а конец ее С5 соединить с началом третьей фазы С3, конец которой С6 соединить с началом первой фазы. В результате получается три точки (вершины): С1 — С6; С2 — C4 и С3 — С5 к которым подвести напряжение сети.
Труднее со схемами соединения фазных обмоток при отсутствии маркировки выводных концов.
Выводы фаз обмотки проходят через два отверстия в корпусе, в одном из них при правильном распределении выводов будут начала, в другом — концы фаз. Соединение обмотки в звезду в этом случае не представляет трудностей: нужно три вывода из любого отверстия соединить в одну точку. Для соединения схемы треугольником нужно с помощью контрольной лампы определить парные выводы, принадлежащие каждой фазе, и соединить треугольник, помня, что в данном отверстии три начала, в другом — три конца фаз.
Если через три отверстия в корпусе двигателя выходят по два вывода в каждом, один из которых является началом одной фазы, а другой концом следующей фазы, то для получения схемы треугольник необходимо попарно соединить выводы из каждого отверстия. Для соединения схемы в звезду нужно с помощью контрольной лампы определить выводы, принадлежащие каждой из фаз. Затем по одному выводу из каждого отверстия, принадлежащего трем разным фазам, надо соединить в одну точку.
В случае незамаркированных выводов обмотки, выходящих без всякой системы из корпуса двигателя, для правильного соединения схемы можно поступить следующим образом: контрольной лампой определяют выводы каждой фазы, произвольно придав им начало и конец. Далее соединяют соответствующую схему обмотки и включают двигатель в сеть. Если двигатель нормально «не разворачивается», то переключают (перевертывают) одну из фаз и подают питание. Если двигатель все же «не разворачивается», то перевернутую фазу включают по-старому, а другую фазу перевертывают и включают двигатель. После трех таких присоединений исправный асинхронный двигатель нормально «разворачивается».
Пусковые свойства асинхронных двигателей оценивают пусковыми характеристиками:
величиной пускового тока Iп или его кратностью К i, величиной пускового момента Мп или его кратностью продолжительностью и плавностью пуска; экономичностью пусковой операции, то есть сложностью схемы пуска; стоимостью пусковой аппаратуры.
Пуск асинхронных двигателей с фазным ротором осуществляют с помощью пускового реостата, включаемого в цепь роторной обмотки через щетки и контактные кольца при подключении к статору полного напряжения сети (рис. 33). Введение сопротивления в цепь ротора уменьшит пусковой ток и увеличит’ пусковой момент двигателя.
Пусковой реостат увеличивает общее активное и полное сопротивление роторной цепи. Поэтому уменьшается ток ротора при пуске, что уменьшает пусковой ток двигателя (в статоре).
Пусковой момент двигателя имеет выражение


Рис. 33. Схема пуска фазного асинхронного двигателя.

При наличии пускового реостата пусковой ток ротора уменьшается, cos Ψ2π за счет введенного активного сопротивления увеличивается. Кроме этого, несколько увеличивается магнитный поток вследствие уменьшения пускового тока. В результате пусковой момент двигателя увеличивается по сравнению с пуском без пускового реостата.
При разбеге двигателя скорость ротора увеличивается, скольжение, э. д. с. и ток ротора уменьшаются Это вызывает уменьшение момента двигателя. Чтобы не затягивать пуск, нужно выводить сопротивление пускового реостата отдельными ступенями (или плавно), чтобы ток ротора при пуске был бы примерно постоянным, а момент двигателя — близким к максимальному. После полного выведения пускового реостата контактные кольца коротко замыкаются и на этом пуск двигателя закапчивается. В двигателях средней и большой мощности есть щеткоподъемный механизм, с помощью которого поворотом рукоятки кольца замыкают накоротко и поднимают щетки.
Малый пусковой ток и большой пусковой момент — достоинство фазных асинхронных двигателей перед короткозамкнутыми.

Пуск асинхронных короткозамкнутых двигателей осуществляется при полном номинальном и пониженном напряжении на обмотке статора.
Прямой пуск короткозамкнутых двигателей (рис 34) характеризуется простотой операции. Для пуска достаточно подать напряжение на статорною обмотку включением рубильника, магнитного пускателя.
Существенный недостаток этого способа — большой пусковой ток, он превышает номинальный в 4—7 раз. Большой ток при прямом пуске асинхронного двигателя не опасен для обмотки статора, так как пусковой ток протекает кратковременно, температура нагрева обмотки не успевает достичь значительной величины.

Рис. 34. Схема прямого пуска короткозамкнутого двигателя.

Большой пусковой ток вызывает большую потерю напряжения в питающей сети. Колебание напряжения в сети отрицательно отражается на других потребителях этой сети, особенно это нежелательно при частых пусках двигателей. Включенные лампы сильно уменьшают свой накал, работающие двигатели уменьшают момент и могут остановиться, их перегрузочная способность уменьшается в зависимости от квадрата снижения напряжения. Кроме того, пускаемый двигатель при тяжелых условиях может «не развернуться». В связи с увеличением мощности источников питания и улучшением сетей прямой пуск короткозамкнутых асинхронных двигателей в настоящее время самый распространенный.
Другие способы пуска короткозамкнутых асинхронных двигателей вызывают уменьшение пускового тока, что достигается уменьшением напряжения на фазе статорной обмотки.

Реакторный способ пуска (рис. 35) осуществляется с применением индуктивного сопротивления. Запускают двигатель так.

Сначала замыкают рубильник 1, ток к статору течет через реактор. Величина пускового тока в этом случае меньше, чем при прямом пуске, так как к двигателю подводится пониженное напряжение за счет потери напряжения в сопротивлении реактора. После разворота ротора реактор шунтируют включением рубильника 2 и на двигатель подают полное напряжение сети.

Читать еще:  Что замерзает в машине в двигателе

Недостаток этого способа тот, что уменьшение пускового тока двигателя сопровождается значительным уменьшением пускового момента. Пусковой ток зависит от напряжения в первой степени, а пусковой момент — от квадрата напряжения. Например, если пусковой ток уменьшился в два раза, то пусковой момент уменьшится в четыре раза.

Для уменьшения пускового тока с помощью реактора в общем случае в а раз в сравнении с током прямого пуска двигателя сопротивление реактора подсчитывают по формуле:

где ф — номинальное фазное напряжение двигателя;
Iп — ток двигателя при прямом пуске.

Рис 36. Схема автотрансформаторного пуска двигателя: 1, 2, 3 рубильники.

Реакторный пуск применяют там, где важно уменьшить пусковой ток, а величина пускового момента не имеет существенного значения.

Автотрансформаторный способ пуска осуществляется от трехфазного автотрансформатора (рис. 36).
Пускают двигатель в такой последовательности. Замыкают рубильник 1, часть обмотки автотрансформатора в этом случае как реактор, двигатель начинает вращаться, если момент сопротивления небольшой.
Затем замыкают рубильник 3, соединяющий звездой обмотки автотрансформатора, и к статору подводят напряжение меньше, чем в сети, в коэффициент трансформации Ка раз. Когда двигатель «развернется» до полного числа оборотов, размыкают рубильник 3 и замыкают рубильник 2 и к двигателю подводят полное напряжение сети.


Рис. 37. Схема пуска асинхронного двигателя переключением обмотки статора со звезды на треугольник.

Автотрансформатор позволяет уменьшить пусковой ток, который потребляет двигатель из сети в К раз. Напряжение на статорной обмотке уменьшается в Ка раз, а пусковой момент в К а раз, то есть при автотрансформаторном пуске ток и момент уменьшаются в одинаковой мере, что выгодно отличает его от реакторного пуска.
Автотрансформатор используют очень кратковременно, в период пуска. Поэтому плотность тока в его обмотках можно допускать значительно большую, чем при работе в обычном режиме. Сложность схемы и большая стоимость аппаратуры ограничивают применение автотрансформаторного пуска лишь двигателями большой мощности.


Рис. 38. Короткозамкнутые двигатели с улучшенными пусковыми свойствами:
а — паз двигателя с двойной клеткой и потоки рассеяния; б — паз двигателя с глубоким пазом и потоки рассеяния; в — распределение пускового тока в стержнях глубокопазного двигателя.

Пуск переключением обмотки статора со звезды на треугольник (рис. 37) применяют для двигателей, работающих при соединении треугольником. Перед пуском двигателя переключатель П ставят в положение звезды, обмотка статора оказывается соединена звездой. Затем включают рубильник Р и двигатель «раскручивается». После того как ротор двигателя развернется до скорости, близкой к номинальной, переключатель быстро переводят в положение треугольник.
Этот способ пуска уменьшает пусковой ток в три раза, но и пусковой момент уменьшается также в три раза. Пуск двигателя переключением статорной обмотки со звезды на треугольник равноценен автотрансформаторному пуску с коэффициентом трансформации автотрансформатора 1,73. Значительное снижение пускового момента ограничивает применение этого способа лишь для двигателей, пускаемых в холостую или под очень незначительной нагрузкой.
В ряде случаев пусковые характеристики асинхронных двигателей с нормальной клеткой не удовлетворяют требования, что привело к созданию двигателей с улучшенными пусковыми свойствами, большим пусковым моментом при малом пусковом токе.

Прямой пуск

Подразумевает подключение намоток статора к электросети без «посредников». Подходит моторам с короткозамкнутым ротором. Это двигатели небольшой мощности, у которых при подключении напрямую к электросети статорных обмоток, образующимися пусковыми токами не вызывается перегрев, способный вывести технику из строя.

В асинхронных двигателях соотношение индуктивности обмоток к их сопротивлению (L/R) небольшое. И оно тем меньше, чем меньше мощность устройства. Поэтому во время запуска образующийся свободный ток быстро затухает, и им можно пренебречь. Брать в учет будет только ту силу тока, которая установилась в результате переходного процесса.

Ниже на рисунке (а) представлена схема магнитного пускателя, обозначенного буковой К. Технически это электромагнитный выключатель, часто применяемый при запуске электродвигателей с короткозамкнутым ротором. Он необходим для автоматического разгона по естественной механической характеристике (обозначим М) от начала запуска (точка П) до момента, когда М станет равным моменту сопротивления (Мс).

На картинке (б) представлен график зависимости пускового тока от начального момента. Исходя из него, ускорение разгона равно разности абсцисс графиков М и М(с). В таком случае, если Мпуск будет меньше Мс, то разогнаться у электродвигателя не получится. Чтобы получить оптимальное для разгона значение Мпуск для мотора с короткозамкнутым ротором используйте формулу (коэффициент скольжения s равен единице):

Отношение Мпуск к номинальному (Мном) – это величина, определяемая как кратность начального момента. Обозначается kпм. Коэффициент для двигателей с короткозамкнутым ротором входит в диапазон от 1 до 1,8 и устанавливается ГОСТом.

Пример. Если kпм=1,4, а Мном=5000 Н*м, то прямой запуск должен начинаться с Мп = 7000 Н*м.

Внимание! Нельзя превышать установленные ГОСТом нормы. Это ведет к повышению активного сопротивления на вращающемся элементе мотора.

Прямой запуск двигателя обладает преимуществами:

  • Дешевизна;
  • Простота;
  • Минимальный нагрев обмоток при запуске.
  • Величина Мпуск составляет до 300% от Мном;
  • Пусковой ток составляет до 800% от номинального (смотрите графики снизу).

Даже с перечисленными недостатками прямой запуск остается наиболее предпочтительным для асинхронных электродвигателей с короткозамкнутым ротором, т.к. обеспечивает высокие энергетические показатели.

Принцип работы

Заключается в формировании электромагнитного поля вокруг проводника, по которому протекает электрический ток. Для асинхронного электродвигателя данный процесс начинается сразу после подачи напряжения на обмотки статора, после чего в роторе наводится ЭДС взаимоиндукции, индуцирующей вихревые токи в металлическом каркасе. Наличие вихревых токов обуславливает генерацию собственной ЭДС, которая формирует электромагнитное поле ротора. Наиболее эффективный КПД асинхронной электрической машины получается при работе от трехфазной сети.

Конструктивно обмотки статора имеют смещение в пространстве друг относительно друга на 120°, что показано на рисунке 2 ниже:

Рис. 2. Геометрическое смещение фаз в статоре

Такой прием позволяет отстроить магнитное поле рабочих обмоток в строгом соответствии с напряжением трехфазной сети, которое имеет аналогичную разность кривых электрической величины.

Рис. 3. Принцип формирования магнитного потока асинхронного двигателя

На рисунке 3 выше все три фазы изображены в разных цветах для упрощения понимания процесса, также здесь изображена кривая токов, протекающих в фазах асинхронного электродвигателя. Теперь рассмотрим физические процессы в обмотках двигателя для трех позиций показанных на рисунке:

  • I – в этой позиции максимальный ток протекает в красной обмотке электродвигателя, а значение силы тока в желтой и синей равны. Основной поток силовых линий формируется красной фазой, а два других дополняют его.
  • II – в данной точке желтая синусоида равна нулю, поэтому никакого потока не создает, а сила тока красной и синей равны. Поток формируется сразу двумя фазами и смещается по часовой стрелке вправо, совершая поворот.
  • III – третья точка характеризуется максимумом токовой нагрузки для синей кривой, а красная и желтая имеет равную амплитуду, но противоположную по направлению. В результате чего максимум магнитных линий южного и северного полюса сместиться еще на 30°.
Читать еще:  Ямз 238 датчик оборотов двигателя

По данному принципу магнитное поле статора вращается в асинхронной электрической машине в течении периода. За счет магнитного взаимодействия с полем статора асинхронного электродвигателя происходит поступательное движение ротора вокруг своей оси. Можно сказать, что ротор пытается догнать поле статора. Именно за счет разницы во вращении полей данный тип электрической машины получил название асинхронной.

Способы пуска асинхронных электродвигателей. Достоинства и недостатки (2008)

В современном производстве применяют электродвигатели самых разных видов. Но наибольшее применение нашли асинхронные электродвигатели с короткозамкнутым ротором. Они относительно дешевы и требуют, как правило, небольших затрат на эксплуатацию и обслуживание.

У различных производителей пусковые параметры асинхронных электродвигателей могут существенно отличаться при одинаковой номинальной мощности. Использование систем пуска при пониженном напряжении предполагает наличие у электродвигателя высокого пускового вращающего момента при прямом включении (D.O.L). В этом случае уменьшается пусковой ток и пусковой вращающий момент. На технические характеристики оказывает влияние и число полюсов: электродвигатель с двумя полюсами зачастую имеет меньший пусковой вращающий момент, чем электродвигатели с четырьмя и более полюсами (Рис. 1а и 1б).

Напряжение

Трехфазные односкоростные электродвигатели могут использоваться на двух напряжениях. Три фазные обмотки статора соединяются звездой (Y) или треугольником (D) (Рис. 2а и 2б).

Фазные обмотки могут включаться последовательно или параллельно, например, Y или YY На шильдике электродвигателя с короткозамкнутым ротором указывают напряжения для соединения звездой или треугольником, то есть электродвигатель можно подключать к напряжениям 230 В или 400 В. Обмотки соединяются треугольником для 230 В, а при использовании напряжения питания 400 В используется соединение звездой. При изменении напряжения питания следует помнить, что при одинаковой номинальной мощности ток будет зависеть от величины напряжения.

Коэффициент мощности

Электродвигатель всегда потребляет активную мощность, которая преобразуется в механическую работу. Для намагничивания активной стали статора и ротора требуется реактивная мощность, которая является паразитной. На схеме активная и реактивная мощности представлены как P (активная) и Q (реактивная), которые совместно дают мощность S (полная). Соотношение между активной мощностью (кВт) и реактивной мощностью (кВА) называется коэффициентом мощности и обозначается как cos9. Нормальное значение этого коэффициента лежит в пределах 0,7-0,9, при этом небольшие электродвигатели имеют невысокое значение этого параметра, а мощные — высокое.

Скорость

Скорость электродвигателя переменного тока зависит от двух параметров: количество полюсов обмотки статора и частоты напряжения питания. При частоте 50 Гц, электродвигатель будет работать со скоростью равной константе 6000 об./ мин., деленной на число полюсов, а при частоте 60 Гц, константа будет равна 7200 об/мин.

Крутящий момент

Пусковой крутящий момент мотора зависит от мощности электродвигателя. Для небольших электродвигателей мощностью до 30 кВт, он в 2,5-3 раза больше номинального крутящего момента. Для электродвигателей мощностью до 250 кВт типовое значение в 2-2,5 раза больше номинального крутящего момента. Более мощные электродвигатели имеют еще меньший пусковой крутящий момент, иногда даже меньше номинального. Такой электродвигатель невозможно пустить под нагрузкой даже путем пуска прямой подачи напряжения.

Пуск прямой подачей напряжения

Это метод один из самых распространенных способов пуска электродвигателей. Пусковое оборудование состоит из главного контактора и теплового или электронного реле перегрузки. Недостатком этого метода является самый большой пусковой ток, превышающий номинальный в 6-7, а в некоторых случаях и в 10-12 раз. Помимо пускового тока возникает импульсный ток, превышающий номинальный ток в 14 раз. Эти величины зависят от конструкции и размера электродвигателя, при этом менее мощные электродвигатели имеют большие относительные пусковой и импульсный токи. При пуске прямой подачей напряжения пусковой крутящий момент также весьма велик и в большинстве случаев больше необходимого, что приводит к износу и выходу из строя приводимого оборудования.

Пуск переключением соединения звезда-треугольник

Этот способ уменьшает пусковой ток и пусковой крутящий момент. Пусковое устройство обычно состоит из трех контакторов, реле перегрузки и таймера, задающего время нахождения в пусковом положении. Чтобы можно было использовать этот метод пуска, обмотки статора электродвигателя, соединенные треугольником, должны быть рассчитаны на работу в номинальном режиме. В этом случае пусковой ток составляет около 30 % от пускового тока, возникающего при пуске прямой подачей напряжения, а пусковой крутящий момент на 25 % меньше возникающего при пуске прямой подачей напряжения (Рис. 3а, 3б и 3в).

Частотные преобразователи и системы плавного пуска

Развитие элементной базы позволило создать новые классы оборудования для управления режимом электродвигателя. Были созданы частотные системы и системы плавного пуска, которые отличаются назначением и принципом работы.

Частотные преобразователи управляют режимом работы электродвигателя в течении всего периода работы, контролируя основные электромеханические параметры. Принцип работы основан на преобразовании переменного тока 50 Гц в постоянный, и далее методом высокочастотной модуляции (ЧИМ или ШИМ) преобразуется напряжение постоянного тока в переменное с регулируемой частотой (Рис. 4 а). Это позволяет управлять режимом работы электродвигателя изменением частоты на выходе привода. За счет управления частотой при пуске номинальный вращающий момент может быть достигнут на низкой скорости. Другой полезной функцией является мягкая остановка. Также данное устройство позволяет стабилизировать пользовательский параметр при изменяемых внешних характеристиках — например, давление в трубопроводе высотного дома поддерживается неизменным независимо от потребления.

В основе работы системы плавного пуска лежит принцип фазового регулирования, что позволяет при малом напряжении на электродвигателе минимизировать пусковой ток и крутящий момент (Рис. 4 б). На первом этапе запуска напряжение, подаваемое на электродвигатель, настолько мало, что механические усилия минимальны. Постепенно напряжение и крутящий момент возрастают, и механизмы начинают разгоняться. Одним из преимуществ этого метода пуска является возможность точной регулировки крутящего момента, независимо от наличия нагрузки. Особенностью является бережное отношение к приводимому механизму. Другой функцией системы мягкого пуска является мягкая остановка.

Пуск прямой подачей напряжения

Осуществляется подачей полного напряжения без последующей коммутации. Характеризуется максимальными пусковыми токами и ударным воздействием на приводимые механизмы. Применяется для маломощных устройств без особых требований к оборудованию.

Читать еще:  Что нужно для атмосферного двигателя ваз

Пуск переключением звезда-треугольник

Обеспечивает снижение бросков пускового тока, пониженный пусковой крутящий момент, что обеспечит плавный разгон оборудования. Данный способ пуска позволяет производить пуск оборудования в условиях ограниченного питания, когда технические характеристики питающей сети не позволяют произвести пуск прямой подачей электроэнергии

Кстати, в ассортименте продукции ТМ IЕК есть автомат, позволяющий решить задачу пуска электродвигателя независимо от схемы включения. Это контакторы КМИ в оболочке. Для реализации схемы «звезда-треугольник» нужно использовать реверсивные пускатели, тепловые реле и различного рода дополнительное оборудование к ним. Для систем частотного регулирования и плавного пуска выпускается широкий ассортимент автоматических выключателей серии ВА88-ХХ.

Оборудование Пускового устройства на примере автоматов ТМ IEK

Пусковое устройство состоит из 2-х силовых контакторов типа КМИ или КТИ ( в зависимости от мощности электродвигателя) и промежуточного контактора КМИ с пневматической приставкой ПВИ, позволяющей получать выдержку времени на время разгона электродвигателя при пуске.

Пуск по схеме звезда-треугольник

Пуск производится при срабатывании контактора К1 (к питающей сети подключаются обмотки электродвигателя соединенные звездой). Электродвигатель начинает разгоняться.

В зависимости от типа механизма, приводимого в движение электродвигателем, и возможности питающей сети, производится регулировка выдержки времени на приставке ПВИ, установленной на промежуточном контакторе. По истечении времени происходит отключение контактора К1 и включение контактора К2, обмотки электродвигателя переключаются на соединение «треугольник», и электродвигатель достигает номинальной частоты вращения.

Схема (Рис. 5) спроектирована с учетом изготовления из стандартных комплектующих, минимизации расходов и повышения надежности конечного изделия. Законченное устройство может быть размещено в стандартной металлооболочке подходящего размера из ассортимента ТМ IEK.

Трёхфазные двигатели

Трехфазные асинхронные электродвигатели, как правило, используются только на крупных промышленных предприятиях, т.к. для его работы требуется трёхфазное напряжение 380 В AC.

Отличаются по мощности и количеству обмоток. С мощностью всё понятно, чем больше мощность, тем большее усилие создаётся на валу электродвигателя.

Количество обмоток влияет на частоту вращения двигателя, а именно:
при частоте трёхфазного тока f равной 50 Гц или 3000 периодов в минуту, число оборотов N вращающегося поля в минуту будет:

  • при 2 полюсах на статоре: N = (50х60) / 1 = 3000 об/мин,
  • при 4 полюсах на статоре: N = (50х60) / 2 = 1500 об/мин,
  • при 6 полюсах на статоре: N = (50х60) / 3 = 1000 об/мин,
  • при числе пар полюсов статора, равном P: N = (fх60) / P.

Коммутационная колодка трехфазного двигателя имеет 6 зажимов, которые соединяются с началом (U1, V1, W1) и концом (U2, V2, W2) обмотки каждой фазы.

Возможно подключение обмотки трёхфазного электродвигателя в двух режимах: «звезда» и «треугольник».

  • При подключении двигателя «треугольником» фазные концы обмоток подключаются последовательно друг с другом с напряжением 220 В AC.
  • При подключении двигателя «звездой» все выходные концы фазных обмоток соединяются в один узел с напряжением 380 В AC.

При малых напряжениях нагрузки рекомендуется использовать соединение «треугольник», при более высоких – «звезду».

При необходимости получить консультацию по подключению и работе электродвигателя,
а также по приобретению устройств, которые помогут улучшить его работу,
обращайтесь к специалистам Компании « РусАвтоматизация » .

Хотите сохранить
эту статью? Скачайте
её в формате PDF
Остались вопросы?
Обсудите эту статью
на нашей странице В Контакте
Хочешь читать статьи
первым, подписывайся на
наш канал в Яндекс.Дзен

Рекомендуем прочитать также:

Принудительное охлаждение электродвигателя

Пуск центробежного насоса

Применение УПП для центробежных вентиляторов

Типы устройств плавного старта

Их можно разделить на четыре категории.

  • Регулирующие пусковой момент. Принцип действия их таков, что они осуществляют контроль одной фазы. Но при контроле плавного старта не снижают пусковые токи. Поэтому спектр применения их ограничен.
  • Регулирующие напряжение с отсутствием сигнала обратной связи. Работают они по заданной программе и являются одними из самых распространенных в использовании.
  • Регулирующие напряжение с сигналом обратной связи. Их принцип действия — способность менять напряжение и регулировать величину тока в заданном диапазоне.
  • Регулирующие ток с наличием сигнала обратной связи. Являются самыми современными из всех устройств подобного типа. Обеспечивают наибольшую точность управления.

Устройства плавного пуска УБПВД-ВЦ

Главная Продукция и услуги Устройства плавного пуска УБПВД-ВЦ

Пример системы безударного пуска на базе УБПВД-ВЦ.

Система безударного пуска 4-х электродвигателей механизмов с «вентиляторной» характеристикой нагрузки состоит из штатных рабочих выключателей Q1…Q4, головных выключателей QF1 и QF2, а также пусковых вакуумных выключателей в шкафах ШКА1 и ШКА2.

Пуск электродвигателя производится под управлением контроллера, расположенного в шкафу ШК в следующей последовательности. При наличии на входе контроллера сигнала готовности агрегата к пуску командой ПУСК с пульта управления (ПУ) инициализируется программа автоматического пуска. Контроллер включает пусковой выключатель QS, соответствующий запускаемому электродвигателю, а затем головной выключатель QF, подключающий устройство УБПВД к той секции шин, к которой после разгона будет подключен запускаемый двигатель. На тиристоры устройства УБПВД подается напряжение, и в запертом состоянии производится их тестирование. При положительном результате теста контроллер разрешает подачу отпирающих импульсов на тиристоры. Угол отпирания тиристоров плавно уменьшается, и на статорных обмотках двигателя начинают расти напряжение и ток.

Ток плавно нарастает до тока трогания (1,3…1,6) номинального тока двигателя, и электродвигатель начинает разгоняться. Если в процессе разгона нагрузка со стороны агрегата увеличивается, то контроллер плавно поднимает ток по линейному закону к концу разгона до величины 2…2,5 номинального. По окончании разгона контроллер включает рабочий выключатель и подключает двигатель на полное напряжение сети. При пуске синхронного электродвигателя подается возбуждение, после чего двигатель втягивается в синхронизм. Затем запираются тиристоры, отключаются головной выключатель QF и пусковой выключатель QS. Система готова к следующему пуску.

Устройство допускает 3 пуска подряд из холодного состояния. Каждый последующий пуск через 10 минут. Устройство УБПВД не только исключает негативные пусковые воздействия на электродвигатель и механизм, но и облегчает работу коммутирующей аппаратуры:

  • Включение и отключение пусковых и головных выключателей происходит в бестоковом режиме.
  • Рабочий выключатель Q после разгона электродвигателя включает вместо 6-8-кратного пускового тока установившийся ток на номинальной (подсинхронной) скорости двигателя.


Структура условного обозначения

Схема плавного пуска электродвигателей УБПВД-ВЦ тиристорным регулятором напряжения

Однолинейная схема плавного пуска электродвигателей УБПВД-ВЦ

ВТБ – высоковольтные тиристорные блоки
QSл – линейный разъединитель
QSш – шинный разъединитель
ОПН – ограничитель напряжений
ТТ – трансформатор тока

Технические характеристики устройств серии УБПВД-ВЦ

(8352) 39-00-10, 39-00-12

Каталог «Преобразовательная техника» 2.9 Mb

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector