Promremont34.ru

Авто мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое двигатель на топливных элементах

Два оттенка зеленого. Автомобили на водородных топливных элементах против электромобилей

В 2015 году Илон Маск назвал технологию получения энергии из водорода «очень глупой задумкой и опасной технологией». Произнося эти слова, создатель Tesla, вероятно, намекал на катастрофы, подобные катастрофе дирижабля «Гинденбург». Крушение воздухоплавательного аппарата произошло 6 мая 1937 года. При посадке наполненная водородом оболочка дирижабля загорелась — погибло 35 человек. И хотя крушение «Гинденбурга» не самая страшная катастрофа в истории воздухоплавания, слово «водород» надолго стало для человечества синонимом опасности. Спустя почти 80 лет водородные технологии вернулись в мир транспорта. На этот раз — в виде топлива для автомобилей.

История создания водородного двигателя

Начнем с того, что идеи построить водородный мотор появились еще в 1806 г. Основоположником стал Франсуа Исаак де Риваз, который получал водород из воды методом электролиза. Как видно, двигатель на водороде «родился» задолго до того, как был поднят ряд вопросов касательно окружающей среды и токсичности выхлопа.

Другими словами, попытки запустить ДВС на водороде были предприняты не для защиты окружающей среды, а в целях банального использования водорода в качестве топлива. Спустя несколько десятков лет (в 1841 г.) был выдан первый патент на такой двигатель, в 1852 г. в Германии появился агрегат, который успешно работал на смеси воздуха и водорода.

Однако после окончания войны дальнейшее развитие водородного двигателя было приостановлено как в СССР, так и во всем мире. Затем об этом двигателе вспомнили только тогда, когда в 70-е годы XX века случился топливный кризис. В результате компания BMW в 1979 г. построила автомобиль, двигатель которого использовал водород в качестве основного топлива. Агрегат работал относительно стабильно, не было взрывов и выбросов водяного пара.

Другие автопроизводители также начали работы в этой области, в результате чего к концу XX века появилось не только много прототипов, но и вполне успешно действующих образцов двигателей на водородном топливе (бензиновый и дизельный двигатель на водороде).

Однако после того как топливный кризис окончился, работы над водородными ДВС также были свернуты. Сегодня интерес к альтернативным источникам энергии снова растет, теперь уже по причине серьезных экологических проблем, а также с учетом того, что запасы нефти на планете быстро сокращаются и на нефтепродукты закономерно растут цены.

Также правительства многих стран стремятся стать энергонезависимыми, а водород является вполне доступной альтернативой. На сегодняшний день над водородными ДВС ведут работы GM, BMW, Honda, корпорация Ford и т.д.

Работа установок по генерации водорода

Водородные заправочные станции (ВЗС) могут быть мобильными, стационарными и домашними. Первый вид предназначен для заправки автомобилей в местах без подходящей инфраструктуры.

Стационарные заправки обычно принадлежат крупным компаниям и продают водородное топливо автомобилистам. Большая часть таких станций находится в Канаде и США, Китае, Японии и Германии.

Домашняя заправка – комплект оборудования для частного использования. Производит до 1000 кг чистого водорода в год – достаточно для ежедневной заправки 1-5 автомобилей. Газ производится методом гидролиза воды в ночное время, чтобы не создавать резких скачков напряжения в электросети.

По объёмам выпускаемой продукции стационарные станции делят на три типа:

  • малые, выпускающие до 20 кг водорода в сутки (хватит на заправку 5-10 автомобилей);
  • средние, обеспечивающие ежедневную заправку 250 легковых авто или 25 грузовых – норма выработки от 50 до 1250 кг в день;
  • промышленные – заправляют больше 500 авто в сутки, предоставляя от 2500 кг газа.

В конструкцию водородной заправки входит электролизёр, системы очистки и хранения водорода, компрессор (если топливо находится в газообразном состоянии) и диспенсер, обеспечивающий раздачу водорода потребителям. Причём, на малых и средних станциях газ может выпускаться как с помощью электролиза воды, так и за счёт каталитического риформинга углеводородов – процесса, проводимого при температуре около 500 градусов и давлении до 4 МПа.

Стандарты на топливо

В частности, стандарт ISO 17268 включает устройства заправки газообразным водородом наземных транспортных средств. Соединитель для заправки водородом стандартизирован по стандарту ИСО для стран, имеющих рынок транспортных средств с топливными элементами. Так, потребители смогут получать водород с любой водородной станции в Китае, Европе, Японии, Корее, Соединенных Штатах и т.д. ISO 23828 также относится к дорожным транспортным средствам с топливными элементами и используется в качестве измерения расхода топлива транспортных средств, работающих на компримированном водороде. Экономия топлива измеряется с помощью данного метода и упоминается в GTR 15 международных технических правил. Измеряемая таким образом экономия топлива будет использоваться правительствами для квалификации транспортных средств и заводов-изготовителей, применяющих этот метод, в качестве одного из показателей повышения качества транспорта.

Каждый день такие препятствия, как светофоры и изменения скоростного режима, означают, что требования к мощности трансмиссии автомобиля быстро меняются. Так есть ли у автомобилей на топливных элементах сила тяги, которую мы ожидаем? ISO 20762 был разработан для проверки максимальной мощности гибридного электрического транспортного средства (HEV) на системную мощность. ISO 23274-1 позволяет измерить расход топлива без погрешностей при запуске из другого состояния заряда. Такая ситуация также предполагает, что состояние заряда можно проверить при разных циклах, нагрузках и температурах.

Технический комитет ИСО/ТК 197, который занимается разработкой стандарта по водородным технологиям, возглавляет Андрей В. Чувелев (Andrei V. Tchouvelev), один из ведущих мировых экспертов по водородной безопасности, правилам, кодексам и стандартам. Г-н Чувелев 35 лет занимался исследованиями водорода и, переехав в Канаду из родной России, стал соучредителем канадской программы водородной безопасности. Комитет, который он возглавляет, не занимается непосредственно автомобилями, но занимался разработкой серии стандартов на топливо, поэтому все, что находится в диапазоне от автоматов заправочных станций до автомобилей, работающих на водороде, входит в его компетенцию. Существуют общие требования, а также детализация, касающаяся таких компонентов, как дозатор, компрессор, клапаны, фитинги и топливные шланги.

Читать еще:  Датчиком автоматического включения при запуске двигателя

Первый в мире парк такси, работающих на водороде, с гордостью демонстрирует свой логотип на старте в 2015 году.

Технология нового поколения

Созданный на универсальной модульной мультиэнергетической платформе EMP2 (эффективная модульная платформа), новый PEUGEOT e-EXPERT Hydrogen оборудован электрическим приводом и сочетает в себе два источника электроэнергии.Основными элементами данной технологии являются;

• водородный топливный элемент, расположенный в моторном отсеке в передней части автомобиля, который подает электричество в электродвигатель путем рекомбинации водорода, содержащегося в баке, с кислородом из воздуха. Из выхлопной трубы выделяется только водяной пар.
• Электродвигатель с максимальной мощностью 100 кВт и максимальным крутящим моментом 260 Нм. Этот электропривод, расположенный на передней оси, аналогичен силовому агрегату PEUGEOT e-EXPERT (аккумуляторно-электрическая модель), который выделяется коробкой передач, адаптированной к ограничениям нагрузки, присущим коммерческим автомобилям.
• Высоковольтный литий-ионный аккумулятор, расположенный под сиденьями кабины, емкостью 10,5 кВт ч и мощностью 90 кВт.
• Трехфазное бортовое зарядное устройство мощностью 11 кВт, расположенное в моторном отсеке.
• Система резервуаров, состоящая из 3-х резервуаров для хранения водорода, расположенных под полом, общей емкостью 4,4 кг при давлении 700 бар.

Запас хода нового PEUGEOT e-EXPERT Hydrogen составляет до 400 км по циклу WLTP (Всемирный цикл согласованных испытаний транспортных средств малой грузоподъемности в процессе омологации), распределенный следующим образом:

• 350км при использовании водородного топливного элемента,
• 50 км с высоковольтным аккумулятором.

Высоковольтный аккумулятор (10,5 кВт ч) заряжается через зарядное гнездо на левом переднем крыле. Трехфазное бортовое зарядное устройство мощностью 11 кВт, обеспечивает следующее время зарядки:

• при зарядке от устройства Wall Box 11 кВт (32A): полная зарядка менее, чем за час,
• от усиленной розетки (16A): полная зарядка в течение 3 часов,
• от стандартной розетки (8A): полная зарядка в течение 6 часов.

Электромобиль средней мощности с подключаемым водородным топливным элементом предлагает различные рабочие фазы системы :

• При запуске и на низкой скорости: только высоковольтный аккумулятор обеспечивает электродвигатель мощностью, необходимой для тяги,
• На постоянной скорости: топливный элемент подает энергию непосредственно на электродвигатель,
• Во время ускорения, обгона или подъема: топливный элемент и высоковольтный аккумулятор объединяются для подачи энергии на электродвигатель,
• Во время торможения и замедления электродвигатель заряжает высоковольтный аккумулятор.

Уже со старта автомобиль вырабатывает достаточную мощность без вибрации, без шума, без переключения передач, и, разумеется, без выбросов CO2. Единственные выбросы из выхлопной трубы – это водяной пар.

Марка также позаботилась о безопасности пешеходов в городе: на скорости до 30 км/ч включается звуковой сигнал, который указывает на приближение автомобиля спереди и сзади.

Для спокойствия пользователей на высоковольтный аккумулятор дается гарантия на 8 лет или 160 000 км пробега с сохранением емкости не меньше 70%.

А как же водород?

Автомобили на водородном топливе пока находятся в тени своих электрических собратьев. Причин тому несколько.

Во-первых, водород, будучи самым распространенным химическим элементом во вселенной, все еще стоит довольно дорого — примерно в 8-10 раз дороже бензина.

Автор фото, Getty Images

Водород — удобное топливо для тяжелого транспорта. Поэтому в Нидерландах придумали и испытывают трактор на водородных топливных элементах

Во-вторых, его производство весьма энергозатратное — на производство одного кубометра водорода с помощью электролиза, например, требуется 4-5 киловатт электроэнергии, и далеко не всегда она поступает из «зеленых» источников. По оценке Международного агентства по энергетике, замещение водородом всего транспортного топлива, используемого сегодня во Франции, потребовало бы производства вчетверо большего количества электроэнергии. Для электролиза требуется, в частности, платина, добыча которой тоже очень затратна и энергоемка и тоже не соответствует растущим требованиям экологов.

  • Ученые научились делать топливо при помощи Солнца

В-третьих, это отсутствие инфраструктуры: на сегодняшний день в мире работает всего около 450 водородных заправочных станций, четверть из которых приходится на Японию и треть — на страны Европы. Согласно оценкам американской Национальной лаборатории по изучению возобновляемой энергии, стоимость строительства одной водородной заправочной станции варьируется от 1 до 4 миллионов долларов, в то время как оборудование для обычной АЗС обходится в среднем в 100 тысяч долларов.

В-четвертых, хранение и транспортировка водорода отнюдь не безопасны и пока тоже требуют значительных затрат.

Однако, если приглядеться, с похожими проблемами сталкивались и электромобили всего 10-15 лет назад — они стоили немалых денег, для их производства (в основном для аккумуляторов) требуются редкие металлы, добыча которых наносит немалый ущерб планете. За пределами крупных городов зарядить их было практически негде, разве что дома из розетки, электричество в которую поступало с соседней электростанции на ископаемом топливе и обходилось счастливому владельцу в копеечку.

Нельзя сказать, что все эти проблемы благополучно разрешены, однако прогресс достигнут немалый. Можно полагать, что и водородные автомобили претерпят аналогичные метаморфозы в сравнительно короткое время.

Автор фото, Getty Images

Эта только что открывшаяся заправочная станция в Антверпене может заправлять водородным топливом не только автомобили, но и автобусы, грузовики и даже суда

Приспособить уже имеющуюся углеводородную инфраструктуру для заправки водородом будет дешевле, чем создавать ее с нуля, считают эксперты.

  • Китай испытал первый самолет на водородном топливе
Читать еще:  Хундай элантра неисправности двигателя

«Водород гораздо более совместим с существующей сетью АЗС и может производиться либо на месте в крупных торговых точках путем электролиза воды и храниться в специальном резервуаре высокого давления, либо доставляться и закачиваться прямо в резервуары производителями газа», — утверждает Джефф Олдэм, глава Suresite, британской компании, которая занимается поставкой систем платежа и обработки данных и мониторингом требований охраны труда и техники безопасности на автозаправочных станциях.

Что же касается энергозатрат на производство водорода, эту проблему предполагается решить переводом его на ветряную энергию. Таким образом крупные АЗС смогут сами производить водородное топливо.

К слову, заправка машины водородом по времени сопоставима с заправкой бензином или дизелем.

Как работает водородный двигатель?

  • Как работает водородный двигатель?
  • Краткая история
  • Принцип работы и типы водородного двигателя
  • Силовые установки на основе водородных топливных элементов
  • Водородные двигатели внутреннего сгорания
  • Водородный двигатель на современном рынке
  • Плюсы и основные недостатки водородных двигателей

Традиционный двигатель внутреннего сгорания (ДВС) имеет ряд существенных недостатков, что заставляет ученных искать ему достойную замену. Самым популярным вариантом подобной альтернативы является электродвигатель, однако он не единственный, кто может составить конкуренцию ДВС. В данной статье речь пойдет о водородном моторе, который по праву считается будущим автомобилестроения и может решить проблему с вредными выбросами и дороговизной топлива.

  • Краткая история
  • Принцип работы и типы водородного двигателя
    • Силовые установки на основе водородных топливных элементов
    • Водородные двигатели внутреннего сгорания
  • Водородный двигатель на современном рынке
  • Плюсы и основные недостатки водородных двигателей

Краткая история

Несмотря на то, что сохранность окружающей среды только сейчас стала массовой проблемой, об изменении стандартного двигателя внутреннего сгорания ученые задумывались и раньше. Так, мотор, работающий на водороде, «увидел мир» еще в 1806 году, чему поспособствовал французский изобретатель Франсуа Исаак де Риваз (он производил водород при помощи электролиза воды).

Прошло несколько десятков лет, и в Англии выдали первый патент на водородный двигатель (1841 год), а в 1852 году немецкие ученые сконструировали ДВС, который мог работать на воздушно-водородной смеси.

В первой половине ХХ века интерес общественности к водородным двигателям был невелик, но с приходом топливно-энергетического кризиса 70-х годов ситуация резко изменилась. В частности, в 1879 году компания BMW выпустила первый автомобиль, который вполне успешно ездил на водороде (без взрывов и водяного пара, вырывающегося из выхлопной трубы).

Следом за BMW, в этом направлении начали работать другие крупные автопроизводители, и к концу прошлого столетия практически каждая уважающая себя автокомпания уже имела концепцию разработки машины на водородном топливе. Тем не менее, с окончанием нефтяного кризиса исчез и интерес общественности к альтернативным источникам топлива, хотя в наше время он снова начинает пробуждаться, подогреваемый защитниками экологии, борющимися за снижение токсичности выхлопных газов автомобилей.

Более того, цены на энергоносители и желание обрести топливную независимость только способствуют проведению теоретических и практических исследований ученными многих стран мира. Самыми активными являются компании BMW, General Motors, Honda Motor, Ford Motor.

Принцип работы и типы водородного двигателя

Основным отличием водородной установки от традиционных двигателей является способ подачи топливной жидкости и последующее воспламенением рабочей смеси. При этом принцип трансформации возвратно-поступательных движений кривошипно-шатунного механизма в полезную работу остается неизменным. Учитывая, что горение нефтяного топлива происходит достаточно медленно, топливно-воздушная смесь наполняет камеру сгорания раньше, чем поршень займет свое крайнее верхнее положение (так называемую верхнюю мертвую точку).

Стремительная реакция водорода дает возможность сдвинуть время впрыска ближе к тому моменту, когда поршень начинает возвращаться к нижней мертвой точке. Нужно отметить, что давление в топливной системе не обязательно будет высоким.

Если водородному двигателю создать идеальные рабочие условия, то он может иметь топливную систему питания закрытого типа, когда процесс смесеобразования будет проходить без участия атмосферных воздушных потоков. В таком случае после такта сжатия в камере сгорания остается водяной пар, который, проходя через радиатор, конденсируется и снова превращается в обычную воду.

Однако применение такого вида устройства возможно только тогда, когда на транспортном средстве имеется электролизер, отделяющий водород от воды для его повторной реакции с кислородом. На данный момент добиться таких результатов крайне сложно. Для стабильной работы двигателей применяется моторное масло, а его испарения являются частью выхлопных газов.

Поэтому беспроблемный запуск силовой установки и ее устойчивая работа на гремучем газе без использования атмосферного воздуха – пока что неосуществимая задача. Различают два варианта автомобильных водородных установок: агрегаты, функционирующие на основе водородных топливных элементов, и водородные двигатели внутреннего сгорания.

Силовые установки на основе водородных топливных элементов

В основе принципа работы топливных элементов лежат физико-химические реакции. По сути, это те же свинцовые аккумуляторные батареи, вот только коэффициент полезного действия топливного элемента несколько выше, чем АКБ, и составляет около 45% (иногда больше).

В корпус водородно-кислородного топливного элемента помещена мембрана (проводит только протоны), разделяющая камеру с анодом и камеру с катодом. В камеру с анодом поступает водород, а в камеру катода – кислород. Каждый электрод заранее покрывают слоем катализатора, в роли которого нередко выступает платина. При его воздействии молекулярный водород начинает терять электроны.

В это же время протоны проходят через мембрану к катоду и под влиянием того же катализатора соединяются с электронами, поступающими снаружи. В результате реакции образуется вода, а электроны из камеры анода перемещаются в электроцепь, подсоединенную к мотору. Проще говоря, мы получаем электрический ток, который и питает двигатель.

Водородные двигатели на основе топливных элементов сегодня используются на автомобилях «Нива», оснащенных энергоустановкой «Антэл-1», и машинах «Лада 111» с агрегатом «Антел-2», которые были разработаны уральскими инженерами. В первом случае одного заряда хватает на 200 км, а во втором – на 350 км.

Читать еще:  Чем отличаются двигатели vti от thp

Следует отметить, что из-за дороговизны металлов (палладия и платины), входящих в конструкцию таких водородных двигателей, подобные установки имеют очень большую стоимость, что существенно увеличивает и цену транспортного средства, на котором они установлены.

Водородные двигатели внутреннего сгорания

Данный тип силовых установок очень похож на распространенные сегодня моторы на пропане, поэтому, чтобы перейти с пропана на водородное топливо, достаточно просто перенастроить двигатель. Уже существует немало примеров подобного перехода, но нужно сказать, что в этом случае КПД будет несколько ниже, чем при использовании топливных элементов. В то же время, для получения 1 кВт энергии водорода потребуется меньше, что вполне компенсирует данный недостаток.

Использование этого вещества в обычном моторе внутреннего сгорания вызовет целый ряд проблем. Во-первых, высокая температура сжатия «заставит» водород вступить в реакцию с металлическими элементами двигателя или даже моторным маслом. Во-вторых, даже небольшая утечка при контакте с раскаленным выпускным коллектором точно приведет к возгоранию.

По этой причине для создания водородных конструкций используются только силовые агрегаты роторного типа, так как их конструкция позволяет уменьшить риск возгорания за счет расстояния между впускным и выпускным коллектором. В любом случае, все проблемы пока удается обходить, что позволяет считать водород достаточно перспективным топливом.

Хорошим примером транспортного средства с водородной установкой может послужить экспериментальный седан BMW 750hL, концепт которого был представлен еще в начале 2000-х годов. Автомобиль оснащен двенадцатицилиндровым мотором, работающим на основе ракетного топлива и позволяющим разогнать машину до 140 км/час. Водород в жидкой форме хранится в специальном баке, и одного его запаса хватает на 300 километров пробега. Если же он полностью расходуется, система автоматически переключается на бензиновое питание.

Водородный двигатель на современном рынке

Последние исследования ученых в области эксплуатации водородных двигателей показали, что они не только очень экологичны (как электродвигатели), но могут быть очень эффективными в плане производительности. Более того, по техническим показателям водородные силовые установки обходят своих электрических собратьев, что уже было доказано (к примеру, Honda Clarity).

Также следует отметить, что, в отличие от систем Tesla Powerwall, водородные аналоги имеют один существенный недостаток: зарядить аккумулятор при помощи солнечной энергии уже не получится, а вместо этого придется искать специальную заправочную станцию, которых на сегодняшний день даже в мировом масштабе насчитывается не так уж и много.

Сейчас Honda Clarity выпущен достаточно ограниченной партией, и приобрести автомобиль можно только в Стране восходящего солнца, так как в Европе и Америке транспортное средство появится только в конце 2016 года.

Также в наше время выпускаются и другие транспортные средства, использующие водородное топливо. К ним относятся Mazda RX-8 hydrogen и BMW Hydrogen 7 (гибриды, работающие на жидком водороде и бензине), а также автобусы Ford E-450 и MAN Lion City Bus.

Среди легковых автомобилей самыми заметными представителями водородных транспортных средств на сегодня являются автомобили Mercedes-Benz GLC F-Cell (есть возможность подзарядки от обычной бытовой сети, а суммарный запас хода составляет около 500 км), Toyota Mirai (работает только на водороде, и одной заправки должно хватать на 650 км пути) и Honda FCX Clarity (заявленный запас хода достигает 700 км). Но и это еще не все, ведь автотранспорт на водородном топливе выпускается и другими компаниями, например, Hyundai (Tucson FCEV).

Плюсы и основные недостатки водородных двигателей

При всех своих преимуществах, нельзя сказать, что водородный транспорт лишен определенных недостатков. В частности, необходимо понимать, что горючая форма водорода при комнатной температуре и нормальном давлении представлена в виде газа, что вызывает определенные трудности в хранении и транспортировке такого топлива. То есть существует серьезная проблема конструирования безопасных резервуаров для водорода, применяющегося в качестве топлива для автомобилей.

Кроме того, баллоны с этим веществом требуют периодической проверки и сертификации, которые могут выполняться только квалифицированными специалистами, имеющими соответствующую лицензию. Также к этим проблемам стоит добавить и дороговизну обслуживания водородного мотора, не говоря уже об очень ограниченном количестве заправочных станций (по крайней мере, в нашей стране).

Не стоит забывать и о том, что водородная установка увеличивает вес автомобиля, из-за чего он может оказаться не столь маневренным, как вам бы того хотелось. Поэтому, учитывая все вышесказанное, хорошенько подумайте: стоит ли приобретать водородное транспортное средство, или пока с этим лучше повременить.

Однако нужно сказать, что и преимуществ в подобном решении немало. Во-первых, ваш автомобиль не будет загрязнять окружающую среду токсичными выхлопными газами, во-вторых, массовое производство водорода может помочь решить проблему резко меняющихся цен на топливо и перебоев в поставках обычных видов топливных жидкостей.

К тому же, во многих странах уже построены сети трубопроводов для метана, и их несложно адаптировать для прокачки водорода с последующей доставкой к заправкам. Производить водород можно как в малых масштабах, то есть на местном уровне, так и массово – на крупных, централизованных предприятиях. Рост производства водорода послужит дополнительным стимулом для роста поставок этого вещества в бытовых целях (например, для отопления домов и офисов).

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector