Promremont34.ru

Авто мастеру
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое виток в асинхронного двигателя

Контроль качества электроэнергии на предприятиях с большим количеством асинхронных двигателей

Сегодня трудно представить себе наш мир без электрического двигателя. Разнообразие двигателей очень широко: от мощных и дорогостоящих высоковольтных асинхронных двигателей, которые приводят в движение крупные установки (вентиляторы, насосы, дробилки), до небольших двигателей, которые можно встретить в домашних хозяйствах (мясорубки, комбайны, стиральные машины). Электрический двигатель является также одним из самых популярных потребителей энергии среди всех электроустановок.

Наиболее распространённый тип используемого двигателя — трёхфазный асинхронный двигатель; более 80% всех двигателей в промышленности являются асинхронными. Одна из причин высокой популярности асинхронных двигателей — их надёжность, но они также могут преждевременно выйти из строя по причине перегрузки, неправильного режима эксплуатации, несвоевременного контроля за смазкой подшипников. Все указанные проблемы имеют общий корень — температура, перегрев частей асинхронного двигателя и, как следствие, ускоренный выход из строя.

Стационарно установленный измерительный прибор SATEC РМ175 или другой подобный МИП может обеспечить получение важной информации об условиях работы асинхронного двигателя. Контролируя напряжение, ток, мощность и температуру (с помощью аналоговых входов прибора), мы можем получать данные по многим аспектам работы асинхронного двигателя, в том числе:

Качество напряжения на клеммах двигателя

Потребляемая мощность (энергия)

Каждый из этих параметров имеет важное значение, однако мы остановимся на выявлении проблем, связанных с контролем качества напряжения, что, в итоге, позволяет увеличить срок службы асинхронного двигателя.

Качество напряжения на клеммах двигателя зависит от многих факторов. Отклонения от нормальных значений ПКЭ могут снизить срок службы асинхронных двигателей. Все ПКЭ можно разделить на семь категорий, которые могут повлиять на работу асинхронных двигателей:

Несимметрия по напряжению

Пониженное напряжение и перенапряжение

Асинхронный двигатель предназначен для работы в узком диапазоне номинальных напряжений (как правило, ± 10% от номинального значения). При полной нагрузке повышенное более, чем на 10% напряжение на контактах двигателя приводит к существенному увеличению потерь в сердечнике электродвигателя в результате перегрева. Низкое напряжение на клеммах полностью загруженного двигателя также приводит к дополнительному нагреву из-за повышенного тока двигателя.

Определение параметров провода

Можно попробовать найти соответствующую информацию в интернете (намоточные данные). Часто люди делятся личным опытом, как они ремонтировали эл/дрель, фен своей жене, насосную станцию на даче и так далее. Но нужно понимать, что это должна быть ТОЧНО ТАКАЯ ЖЕ модель, иначе не факт, что после ремонта ваша станет работать.

На практике же обычно приходится все вопросы выяснять непосредственно при осмотре. Даже если двигатель выгорел довольно сильно, то всегда можно найти участок, на котором обмотка более-менее сохранилась. В этом месте нужно все тщательно очистить для того, чтобы можно было пересчитать все проводки в «укладке». Все, что нам нужно – определить количество витков и сечение провода.

Заботиться о целостности провода, естественно, смысла нет. Поэтому подойдет все, что поможет удалить нагар и частицы расплавленного лака – бензин, спиртосодержащие жидкости и тому подобное. Как вариант – произвести обжиг (горелка, костер и так далее). Главное – результат.

Обмотка выступает за габариты «железа». На той ее части, которая цела и пригодна к осмотру, срезается (срубается, спиливается) верхушка. Подходящий инструмент подбирается в зависимости от толщины провода, но нужно иметь в виду, что он довольно мягкий (медь). Наша задача – добиться того, чтобы одну часть намотки можно было «распушить». Тогда и число проводков посчитать несложно, и сечение их замерить.

Применение асинхронных двигателей

Предельная простота конструкции и дешевизна производства, а также появление гибких в программировании преобразователей частоты определили практически повсеместное применение асинхронных двигателей с короткозамкнутым ротором в промышленных электроприводах. Однофазные и трехфазные асинхронные двигатели находят применение:

  • в металлургическом производстве: в автоматизированных приводах оборудования прокатных и волочильных станов, литейного производства;
  • в металлообрабатывающем производстве: в автоматизированных приводах станков и обрабатывающих центров, подъёмно-крановом оборудовании, транспортерах и т.п.;
  • в механосборочном производстве: в приводах манипуляторов, конвейеров, компрессорном оборудовании;
  • в горнодобывающем производстве: в бурильном и экскаваторном оборудовании, транспортерах и др.;
  • в насосном, вентиляционном, компрессорном оборудовании;
  • в строительстве: в крановом оборудовании, оборудовании подготовки и транспортировки стройматериалов;
  • в бытовой сфере: в ручном электроинструменте, прачечном, кухонном и офисном оборудовании.

Как рассчитать обмотку электродвигателя

  • ВКонтакте
  • Facebook
  • ok
  • Twitter
  • YouTube
  • Instagram
  • Яндекс.Дзен
  • TikTok

Длительная эксплуатация асинхронных электродвигателей в режиме перегрузки или повышенное напряжение питающей сети в конечном итоге приводят к перегреву обмоток статора и возникновению межвитковых замыканий и пробою на корпус. В результате потребуется ремонт электрической машины с заменой статорных обмоток.

Если в документации на двигатель есть все обмоточные данные, то эта задача для квалифицированного персонала не составит особого труда. Но при отсутствии таковых восстановление электромашины становится более затруднительным. Перед перемоткой потребуется замерить диаметр обмоточного провода, посчитать количество витков в пазу, зарисовать схему расположения обмоток и их шаг, схему соединения обмоток и прочее.

Даже при сохранении необходимой исходной частоты вращения и мощности двигателя могут возникнуть затруднения, если в наличии не окажется провода нужного диаметра. Обмотка, выполненная проводом меньшего диаметра, будет изначально перегреваться даже в режиме номинальной нагрузки. При использовании проводников с большим диаметром существует вероятность того, что при сохранении исходного числа витков в катушке ее габариты не позволят уложить обмотку в пазы сердечника статора.

Читать еще:  Двигатель j08c какое масло

Кроме того, может возникнуть необходимость изменить частоту вращения ротора или величину питающего напряжения. Для этого требуется выполнить расчет обмотки электродвигателя.

Сущность этих расчетов сводится к нахождению оптимального соотношения между магнитными и электрическими характеристиками. Говоря более простым языком, требуется определить нужное количество витков для каждой фазы обмотки.

Какие данные нужны для расчета обмотки

Для выполнения расчетов необходимо предварительно очистить железо статора от остатков старой обмотки и изоляции. Важно помнить, что применение абразивных средств недопустимо. После этого производятся следующие замеры.

D — внутренний диаметр сердечника статора. Измерения выполняются штихмассом или штангенциркулем. Допускается использовать кронциркуль для внутренних измерений и масштабную линейку. Для большей точности делается несколько замеров, выполненных между центрами диаметрально расположенных зубцов, и вычисляется среднее значение.

Da – наружный диаметр сердечника по возможности измеряется с использованием штангенциркуля или кронциркуля для наружных замеров.

– высота тела статора определяется с помощью штангенциркуля.

l – полная длина сердечника. Замер производится масштабной линейкой по дну зубцов.

h – полная глубина зубца

Z1 – количество зубцов (пазов) статора.

Нужно учитывать форму и размеры пазов статора для последующего определения их объема.

Чтобы выполнить расчет обмотки асинхронного электродвигателя также нужно знать толщину электротехнической стали статора и тип ее изоляции, а также количество вентиляционных поперечных каналов, их ширину или диаметр (если таковые есть).

Обработка результатов измерений

Первоначально определяют величину полюсного деления. Этот параметр измеряется в миллиметрах и определяет длину части окружности внутренней расточки, на которой будет располагаться один полюс электродвигателя.

где p – количество пар полюсов

Далее определяется расчетная длина статора (l). Если в статоре отсутствуют вентиляционные каналы, то эта величина остается равной измеренной.Если в конструкции сердечника есть вентиляционные каналы, то для дальнейших расчетов из измеренной длины вычитается произведение количества пазов на их ширину. Однако в расчетах обмотки используется чистая длина стали lо, вычисляемая по формуле

Величина этого коэффициента (kо) зависит от толщины листов электротехнической стали и типа изоляции между ними.

Потом определяется площадь полюсного деления по формуле:

Площадь поперечного сечения всего тела статора высчитывают по формуле:

Число пазов на один полюс и фазу рассчитывают по формуле:

Формулы для определения площади пазов в зависимости от их формы есть на рис.2.

К сожалению, формат обзорной статьи не дает возможности полностью раскрыть эту тему, но зная данные и используя рекомендации из пособия Г.К. Жерве «Как рассчитать обмотку асинхронного двигателя» можно вычислить диаметр обмоточного провода, количество витков в катушках и подобрать шаг и схему их укладки. Следует помнить, что расчет обмотки однофазного электродвигателя имеет свои особенности.

Принцип действия статора

Катушки асинхронного электродвигателя называют обмотками, которые располагаются в пазах статора. У трехфазных асинхронных моторов имеются одинаковые фазные обмотки, размещённые симметрично друг к другу, и их оси образуют угол 120º.

Синусоида каждой фазы обмотки двигателя

Как известно, синусоида тока каждой фазы, относительно предыдущей, сдвинута на треть периода, из-за чего силы магнетических потоков в обмотках изменяются по такому же принципу. Сложив векторы направленности электромагнетического поля в отдельно взятый момент времени, можно получить суммарный магнитный поток.

Складывая данные векторы через разные интервалы периода можно заметить, что направление суммарного магнитного потока вращается синхронно колебаниям тока. Данные вращения магнетического потока можно рассматривать как вращающийся постоянный подковообразный магнит.

Таким образом, принцип работы двигателя переменного тока (синхронного или асинхронного) состоит в создании вращающегося электромагнитного поля статора.

Принцип синхронного вращения

Если для опыта подковообразный магнит прикрепить на ось вращения, то любой металлический предмет, закреплённый между полюсами на независимой оси, будет двигаться синхронно. Логично будет поместить в центр статора с трехфазными обмотками ротор в виде постоянного магнита, чтобы получить синхронный электродвигатель.

Синхронный электродвигатель

Но, даже если использовать мощные современные магниты, вихревые токи, образующиеся при переменном электромагнитном поле, будут нагревать ротор, тем самым лишая его магнитных свойств, которые зависят от температуры постоянного магнита. В отношении статора данную проблему решили, собрав сердечник в виде пластин из специальной электротехнической стали.

Статор собран из листов электротехнической стали . а) Собранный вид , б) сам статор

Собрать таким способом ротор в виде пластинчатого постоянного магнита невозможно, поэтому использовали катушки возбуждения, являющиеся постоянным электромагнитом. Данный принцип действия электродвигателя является синхронным – роторный вал движется синхронно с электромагнитным полем статора, пребывающим во вращении.

Принцип действия асинхронного двигателя

В асинхронном электродвигателе с короткозамкнутым ротором нужно выделить два ключевых момента:

  • Индукция электрического тока в короткозамкнутых витках обмотки ротора, из-за вращающегося электромагнитного поля статора;
  • Возникновение магнитного потока роторных обмоток, взаимодействующего с пребывающим во вращении магнитным полем статора.

Рассмотреть процессы возникновения магнетического поля ротора нужно с момента запуска двигателя. Электромагнитное поле статора начинает вращение сразу же после подачи напряжения на статорные обмотки. Вал ротора находится в это время в состоянии покоя, и в его витках индуцируется переменный ток с частотой вращения поля.

В каждый момент времени, при прохождении полюса вращающегося электромагнитного поля около отдельно взятого короткозамкнутого витка, в нём создаётся взаимодействующее магнитное поле, которое стремится притянуть роторный виток вслед удаляющемуся полюсу движущегося электромагнитного поля.

Данные процессы происходят во всех короткозамкнутых витках при вращении поля вокруг них, из-за чего появляется суммарный вращательный момент роторного вала. Таким образом, принцип работы электродвигателя асинхронного типа состоит во взаимодействии электромагнитных полей статора и ротора.

Читать еще:  Что делает вкладыш в двигателе

Эффект скольжения

По мере набора оборотов валом двигателя, частота пересечения короткозамкнутых роторных витков силовых линий вращающегося магнитного потока будет уменьшаться. Вал двигателя будет стремиться догнать вращающееся поле.

Но, как только роторный вал и статорное поле установятся в состоянии покоя относительно друг друга, короткозамкнутые витки перестанут пересекать силовые линии электромагнитного поля, а значит, в них не будет индуцироваться электрический ток. Исчезновение ЭДС в витках ротора приведёт к потере момента вращения. Данное состояние электродвигателя называют идеальным холостым ходом.

Но в реальных условиях, сила трения будет приводить к потере инерции, и ротор электродвигателя будет запаздывать по отношению к пребывающему во вращении статорному полю, что вызовет возникновение ЭДС в короткозамкнутых витках из-за их пересечения силовых линий магнитного потока.

Данный эффект называют скольжением ротора относительно поля статора, с которым он никогда не сможет установиться в состоянии покоя и вращаться с ним синхронно.

Поэтому такие двигатели называют асинхронными (не синхронными). Иными словами, принцип работы двигателя с короткозамкнутым ротором состоит в эффекте скольжения, являющегося необходимым для возникновения ЭДС в роторных витках.

Оптимальный режим скольжения

Очевидно, что максимальная ЭДС в короткозамкнутых витках будет наводиться в момент запуска, но шихтованный роторный магнитопровод не рассчитан на столь частое перемагничивание, поэтому в данном режиме КПД электродвигателя и его вращательный момент будет низким.

С другой стороны, при приближении к синхронному движению роторного вала и поля статора, ЭДС будет приближаться к нулю, что также приведёт к исчезновению момента. Поэтому асинхронный электродвигатель, имеющий короткозамкнутые роторные витки, рассчитывают таким образом, чтобы коэффициент скольжения


составлял 2÷5%. В данных пределах характеристики мотора будут максимальными.

Устройство

Асинхронные электродвигатели состоят из:

  • Ротора.
  • Статора.

Статор, состоит из основных частей:

  • Корпус . Служит для образования соединений деталей мотора. При малом размере мотора корпус цельнолитой. Материал изготовления – чугун. Могут использоваться сплавы алюминия, либо сталь. Часто в небольших двигателях функцию сердечника выполняет корпус. В больших моторах со значительной мощностью корпус имеет сварную конструкцию.
  • Сердечник . Эта деталь запрессована в корпус, и предназначена для повышения магнитной индукции, изготовлена из электротехнической стали в виде пластин. Для уменьшения потерь, возникающих при вихревых токах, сердечник покрывается лаком.
  • Обмотка . Она расположена в пазах сердечника. Для ее намотки применяется медная проволока, секциями, соединенными между собой по определенной схеме. Витки образуют 3 катушки, которые по сути дела играют роль обмотки статора. Эта обмотка первичная, непосредственно к ней подключается питание.
Ротор:
  • Ротор – элемент двигателя, находящийся во вращении, предназначен для трансформации магнитного поля в энергию движения, состоит из частей:
  • Вал . Подшипники вала находятся на его хвостовиках. При сборке двигателя подшипники запрессовываются, фиксируются болтами к крышкам корпуса.
  • Сердечник . Его сборку производят на валу двигателя. Он состоит из металлических пластин электротехнической стали, которая обладает свойством малого сопротивления магнитному полю. Форма сердечника в виде цилиндра используется для укладки катушки якоря, которая называется вторичной. Она получает энергию от магнитного поля, появляющегося вокруг обмоток статора при подаче питания.
Классификация по типу ротора
  • С короткозамкнутым ротором.


Такой тип двигателя оснащен обмоткой в виде алюминиевых стержней, расположенных в пазах сердечника. На торце ротора они замыкаются между собой кольцами.

  • С ротором, оснащенным контактными кольцами.


Оба типа моторов имеют схожую конструкцию статора. Разница состоит лишь в конструкции якоря.

Классификация по числу фаз

Асинхронные электродвигатели трехфазные являются основными типами моторов. Они оснащены 3-мя обмотками на статоре, смещены на 120 градусов, соединены между собой треугольником, либо звездой, получают питание от трех фаз переменного тока.

Асинхронные электродвигатели небольшой мощности чаще всего изготавливаются двухфазными . Они отличаются от 3-фазных моторов оснащением 2-мя обмотками на статоре, которые смещены между собой на угол 90 градусов.

В случае равенства токов по модулю, и их сдвигу по фазе на 90 градусов, действие мотора не будет иметь отличия от 3-фазного двигателя. Но такие типы двигателей чаще подключаются от однофазной сети, а искусственный сдвиг на 90 градусов образуется за счет конденсаторов.

Асинхронные электродвигатели однофазные оснащаются единственной обмоткой на статоре. Они практически не могут работать. Когда вал электродвигателя неподвижен, то при подаче питания образуется только импульсное магнитное поле, а момент вращения равен нулю. Но если ротор у такого электродвигателя принудительно раскрутить, то он сможет функционировать и приводить в действие какой-либо привод механизма.

В таком случае пульсирующее поле складывается из 2-х симметричных полей: прямого и обратного. Они образуют разные моменты: один двигательный, другой тормозной. Но двигательный момент получается больше тормозного, возникающего вследствие токов ротора высокой частоты.

В связи с этим 1-фазные моторы оснащаются второй обмоткой, применяющейся в качестве пусковой. В ее цепи для сдвига фаз подключают конденсаторы. Их емкость имеет значительную величину, и может достигать нескольких десятков мкФ при маломощном моторе, меньше 1000 ватт.

В управляющих системах применяют 2-фазные асинхронные электродвигатели, получившие название исполнительных. Они оснащены двумя обмотками статора, которые имеют сдвиг фаз на 90 градусов. Одна обмотка (возбуждения) питается от сети 50 герц, а вторая применяется в качестве управляющей.

Читать еще:  Характеристики тягового двигателя троллейбуса

Чтобы образовалось магнитное поле с вращающим моментом, ток в управляющей обмотке должен иметь сдвиг 90 градусов. Для регулировки скорости мотора изменяют значение тока в этой обмотке, либо меняют угол фазы. Реверсивное движение обеспечивается сменой фазы в обмотке управления на 180 градусов, с помощью переключения обмотки.

2-фазные асинхронные электродвигатели производятся в разных исполнениях:
  • Короткозамкнутым ротором.
  • Полым магнитным ротором.
  • Полым немагнитным ротором.
Линейные моторы

Чтобы преобразовать движение вращения в поступательное движение, необходимо применение определенных механизмов. Поэтому при необходимости двигатель конструктивно выполняют таким образом, что его ротор сделан в виде бегунка с линейными движениями.

В таком случае двигатель получается развернутым. Обмотка статора такого мотора сделана, как и у обычного двигателя, но она должна быть уложена на всей длине перемещения бегунка (ротора) в пазы. Такой ротор в виде бегунка чаще бывает короткозамкнутым. К нему присоединен привод механизма. На краях статора располагают ограничители, которые не дают ротору выходить за определенные пределы.

Принцип действия

Якорь электродвигателя приводится в действие с помощью эффекта магнитного поля, возникающего в катушках статора. Для лучшего понимания принципа работы мотора, нужно освежить в памяти закон самоиндукции. Он говорит, что вокруг подключенного к питанию проводника образуется магнитное поле. Его величина прямо зависит от индуктивности проводника и потока частиц.

Также, магнитное поле образует силу, направленную в определенную сторону, которая вращает ротор мотора. Чтобы двигатель работал с достаточной эффективностью, нужно получить значительный магнитный поток. Его можно создать особой установкой первичной обмотки.

Источник напряжения выдает переменное напряжение, значит, вокруг статора магнитное поле будет с такими же свойствами, и прямо зависит от изменения тока сети. Фазы смещены между собой на 120 градусов.

Процессы в обмотке статора

Все фазы сети подключаются к катушкам статора, каждая фаза к определенной катушке. Поэтому магнитное поле будет иметь смещение на 120 градусов. Питание поступает в виде переменного напряжения, значит, вокруг катушек возникнет переменное магнитное поле.

Схема двигателя выполняется так, чтобы магнитное поле вокруг катушек постепенно менялось и переходило от одной катушки к другой. Так образуется магнитное поле с эффектом вращения. Можно определить частоту вращения, которая будет измеряться в числе оборотов вала мотора. Она вычисляется по формуле:

n = 60*f / p, где f – частота тока в сети, р – количество пар полюсов статора.

Работа ротора

Процессы во вторичной обмотке ротора, и особенность конструкции, которую имеют асинхронные электродвигатели с короткозамкнутым ротором.

К обмотке якоря напряжение не подается. Оно возникает из-за индукционной связи с первичной обмоткой. Из-за этого и происходит действие, обратное действию в статоре. Оно соответствует закону: при пересечении проводника магнитным потоком, в нем образуется электрический ток. Магнитное поле возникает вокруг первичной обмотки от того, что к ней подключается трехфазное питание.

Совместная работа ротора и статора

Мы имеем асинхронный мотор с ротором, в котором протекает электрический ток по его обмотке. Этот ток станет причиной появления магнитного поля возле обмотки якоря. Но полярность потока не будет совпадать с потоком статора. А значит, и сила, которая создается им, будет противодействовать силе магнитного поля первичной обмотки, что заставит двигаться ротор, потому что на нем выполнена вторичная обмотка, а вал закреплен на подшипниках в корпусе мотора.

Разберемся в ситуации, когда взаимодействуют силы магнитных полей ротора и статора, по истечении времени. Известно, что магнитное поле первичной катушки вращается с определенной частотой. Образованная им сила будет передвигаться с такой же скоростью. Это приводит в действие асинхронный двигатель, его ротор будет вращаться вокруг своей оси.

Подключение двигателя к питанию

Для запуска электродвигателя его нужно подключить к напряжению 3-фазного тока. Выполнить такое подключение возможно двумя методами: звездой и треугольником.

Схема звездой

Здесь изображен способ соединения треугольником.

Схемы собираются в клеммной коробке, расположенной на корпусе двигателя.

Чтобы запустить электродвигатель в обратном направлении вращения, необходимо только изменить местами две любые фазы путем перебрасывания двух проводов в коробке двигателя.

Однофазный асинхронный двигатель

Выше рассматривался трехфазный асинхронный двигатель, в однофазном асинхронном двигателе их две. Одна рабочая, вторая вспомогательная. Вспомогательная нужна для того, чтобы придать первоначальное вращение ротору. Потому может называться ещё пусковой или стартовой.

Однофазный асинхронный двигатель имеет две обмотки: рабочую и вспомогательную (стартовую или пусковую)

Когда в статоре включена одна обмотка, она создаёт два равных магнитных поля, вращающихся в разные стороны. Если ввести в это поле ротор, который уже имеет какое-то начальное вращение, магнитное поле будет поддерживать это вращение. Но как запустить ротор на старте? Как придать ему вращение, ведь от одной обмотки возникают два равноценных магнитных поля, направленные в разные стороны. Так что с их помощью заставить вращаться ротор невозможно. В простейшем варианте вращение задаётся вручную — механически. Затем вращение подхватывает поле.

Чтобы автоматизировать запуск однофазного асинхронного двигателя и сделана вспомогательная обмотка. Она сконструирована так, что подавляет одну из составляющих магнитного поля основной обмотки и усиливает вторую. Соответственно, одна из составляющих перевешивает, задавая вращение ротора. Затем стартовая обмотка отключается, вращение поддерживает основная.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector