Promremont34.ru

Авто мастеру
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что такое высокая нагрузка на двигатель

Является ли мощность, потребляемая двигателем при различных условиях нагрузки, постоянной?

Двигатель (постоянного тока / индукционный / синхронный) потребляет больше энергии при работе с более высокой нагрузкой, чем при работе с более низкой нагрузкой? Или энергопотребление остается постоянным / одинаковым в обоих случаях?

Я думаю, что мощность, потребляемая двигателем, должна увеличиваться по мере увеличения нагрузки на двигатель.

Но кто-то сказал мне, что потребляемая мощность остается постоянной. Например, двигатель мощностью 10 кВт всегда будет потреблять 10 кВт независимо от нагрузки на него. Он сказал, что потребляемая мощность составляет P = 3 В I pf (pf = коэффициент мощности) для 3-фазной индукции двигатель. Когда нагрузка увеличивает ток, I увеличивается, но потребляемая мощность остается постоянной, так как V, pf изменяются, чтобы компенсировать увеличение I, чтобы мощность оставалась постоянной.

Пожалуйста, объясните это.

JimmyB

Горячие лижет

транзистор

Ваш друг неверен. Номинальная мощность двигателя — это номинальная мощность, которую двигатель вырабатывает на валу. Это не сила, которую тянет мотор. Также обратите внимание, что это номинальная мощность, что означает, что она не всегда вырабатывает эту мощность, только то, что это максимальная мощность, на которой двигатель может безопасно работать непрерывно. Входная мощность двигателя будет варьироваться в зависимости от нагрузки.

Опасность езды на высоких оборотах

Общеизвестно, что высокие обороты, в особенности около красной зоны тахометра будут крайне опасными для двигателя. В подобном случае отмечается износ силового агрегата, моторное масло плохо смазывает подвижные элементы, появляется износ мотора и его перегрев, при этом смазка быстро теряет свои свойства, что еще больше усугубляет состояние двигателя.

При этом нужно помнить, что несколько раз в месяц всё же полезно раскручивать двигатель до таких высоких оборотов и давать ему, что называется жару. То есть, на трассе прохватывать на высокой скорости 5-10 километров, что позволит убрать весь нагар и закоксовку внутри двигателя. Нужно лишь обязательно помнить о безопасности во время таких профилактических поездок на высоких оборотах.

PRO XS — БЫСТРЕЕ ВСЕХ

V8 4,6 л 200 л.с. / 225 л.с. / 250 л.с. / 300 л.с.

Новые подвесные двигатели Mercury Pro XS V8 4,6 л мощностью от 200 до 300 л.с. спроектированы для самых требовательных любителей водного отдыха — участников рыболовных турниров и владельцев моторных катеров, которые без ума от скорости и ускорения. Новые модели Pro XS V8 отличаются такими усовершенствованиями, как самый большой в классе рабочий объем 4,6 л и сконструированный для максимальной производительности блок двигателя, специальная калибровка двигателей Pro XS, редуктор TorqueMaster у некоторых моделей, облегченная конструкция, а также агрессивная форма и графика.

Выбор масла по классу качества

Моторные масла ROLF сертифицируются на соответствие двум системам стандартизации технических требований к свойствам, качеству и химическому состава масла: API и ACEA. Эти две системы классификации являются основными, принятыми как международные.

Стандарт API с самого момента своего создания разделяет автомобильные масла для бензиновых и дизельных автомобилей на две группы – S и С соответственно. Поскольку при разработке новых классов требования, изложенные в них, либо ужесточаются, либо вводятся новые, моторное масло может выбираться по принципу обратной совместимости. Например, если автопроизводитель рекомендовал масла API SL на момент производства, то масла API SM и SN так же точно подойдут по своим характеристикам.

Система ACEA, разработанная в Европе, изначально использовала тот же принцип, например класс A4 (бензиновые двигатели) перекрывал A3, а В2 (дизели) – В1. Но с введением норм токсичности «евро» и обязательного использования катализаторов была разработана новая группа классов ACEA С. Если в сервисной книжке автомобиля указан какой-либо из классов ACEA C в перечне требований, выбирать нужно только масла с тем же или следующим по порядку классом. Масла, не имеющие такого класса в описании, не подойдут, даже если имеют те же или превосходящие классы API S/C и ACEA A/B.

Конвертоплан будущего Bell HSVTOL

В начале августа компания Bell Textron анонсировала проект HSVTOL (High-Speed Vertical Take-Off and Landing), целью которого является создание целого семейства конвертопланов на базе общих решений. Летательные аппараты новой линейки смогут взлетать и садиться вертикально, а в горизонтальном полете развивать высокую скорость. Для решения таких технических задач предлагается несколько любопытных идей и технологий.

Читать еще:  Chevrolet lacetti троит двигатель

Перспективная концепция

Концепт-проект HSVTOL предлагает создание архитектуры летательного аппарата с возможностью масштабирования под разные задачи. В опубликованных материалах уже показано три варианта конвертоплана – от малоразмерной беспилотной машины до грузового аппарата в размерности самолета C-130. Кроме того, в Bell прорабатывают различные дополнительные системы, такие как морские платформы для обеспечения работы БПЛА.

Во всех случаях конвертоплан HSVTOL представляет собой машину с обтекаемым фюзеляжем и среднерасположенным крылом, на законцовках которого размещены гондолы с воздушными винтами. В хвосте предусматривается двухкилевое оперение. В верхней или хвостовой части фюзеляжа должен располагаться основной турбовальный / турбореактивный двигатель, отвечающий за вращение винтов и создание реактивной струи на разных режимах полета.

Предполагается, что HSVTOL будет взлетать вертикально при помощи двух несущих винтов. За счет разворота гондол в вертикальной плоскости он сможет перейти к горизонтальному полету. Для разгона до максимальных скоростей предлагается использовать реактивную тягу и подъемную силу крыла; лопасти винтов при этом должны складываться вдоль гондол.

Как утверждается, по такой схеме могут строиться летательные аппараты разного размера, грузоподъемности и назначения. По расчетам, возможно превышение скорости полета 400 узлов (740 км/ч). Впрочем, каждый проект семейства фактически придется разрабатывать отдельно с применением агрегатов и конструкций, соответствующих техническому заданию.

В начале августа компания «Белл» раскрыла только предполагаемый облик новых конвертопланов и некоторые их характеристики. На днях о проекте стало известно больше: 10 сентября издание The Drive в рубрике The War Zone опубликовало любопытную статью на эту тему. В ней руководитель направления перспективных технологий Bell Джефф Ниссен рассказал об истории разработки конвертопланов и раскрыл новые данные об актуальном проекте HSVTOL.

Общие подходы

Главной задачей проекта HSVTOL является достижение максимально возможной скорости и дальности полета. По этим параметрам новые образцы должны превосходить существующие конвертопланы. С этой целью были проведены некоторые исследования, в ходе которых определили оптимальный уровень летных характеристик.

Установлено, что летательный аппарат новой схемы должен развивать крейсерскую скорость не менее 400 узлов. При менее высоких требованиях по скорости можно использовать «традиционную» схему конвертоплана, использующего винты на всех режимах. Максимальная скорость не должна превышать 0,85 М (более 1000 км/ч в зависимости от высоты). После превышения этого значения ожидается значительный рост сопротивления воздуха. Его можно преодолеть за счет повышения тяги «маршевого» двигателя, однако это ухудшит топливную эффективность и сократит возможную дальность.

Расчетная маневренность HSVTOL выше, чем у других конвертопланов. Легкий или средний аппарат сможет совершать энергичные эволюции и летать с огибанием рельефа местности. Впрочем, достижение маневренности на уровне современных истребителей невозможно.

Планер конвертоплана разрабатывается с учетом снижения заметности, однако его архитектура и экстерьер ограничивают достижимые результаты в этой области. Возможность сложить винты убирает один из главных демаскирующих факторов, однако и на этом режиме машина будет заметнее, чем специально разработанные стелс-самолеты.

Вместе с конвертопланом в «Белл» прорабатывают вопросы базирования. К примеру, БПЛА семейства HSVTOL можно использовать с безэкипажной надводной платформой Sea-based Logistics Unmanned Refuel/Re-arm Platform (SLURRP). Аппарат сможет садиться на такую платформу, автоматически заправляться и снова подниматься в воздух. Средний летательный аппарат можно будет использовать с более крупными платформами, экипажными или автономными.

Вопрос двигателя

Главной задачей проекта HSTOVL является поиск оптимальной архитектуры силовой установки. Сейчас Bell прорабатывают несколько ее вариантов на основе существующих и перспективных компонентов. Одни версии допускают максимально быстрое доведение проекта до испытаний, но ограничивают технические характеристики. Другие схемы позволяют получить высокие летные данные, однако отличаются сложностью и требуют дополнительной проработки.

Наиболее простой подход предлагают реализовать в проекте легкого БПЛА. Такой аппарат должен получить «подъемный» ТВД с трансмиссией к обоим винтам и «маршевый» ТРД. Эта схема позволяет максимально быстро разработать и довести до испытаний опытную машину, используя доступные на рынке двигатели. Однако она не отличается весовой эффективностью и ограничивает общий уровень характеристик.

Читать еще:  Хундай старекс работа двигателя

Для более крупных вариантов HSVTOL предлагаются комбинированные схемы, в которых полет на всех режимах будет обеспечен одним двигателем или несколькими с необходимой суммарной мощностью. Расчеты уже показали, что ТВД не даст нужные характеристики на двух основных режимах работы, и потому нужно другое решение.

На уровне теории рассмотрели двигатель Pratt & Whitney F135 с подъемным вентилятором, разработанный для истребителя F-35B. При всех своих преимуществах, он показывает недостаточную тягу и, как минимум, нуждается в доработке. Изучается гибридная схема, в которой ТРД связан с генератором, а несущий винт вращается электромотором. Такой вариант представляет интерес, но пока не может показать высокую топливную или весовую эффективность.

Оптимальным вариантом считают многорежимный газотурбинный двигатель, способный попеременно выдавать большую мощность на вал и создавать высокую реактивную тягу. Однако изделия такого класса пока не продвигались дальше испытаний, а разработка нового образца займет неопределенное время. Поэтому в ближней и средней перспективе в «Белл» планируют изучать и прорабатывать только доступные изделия.

Набегающим потоком

Большой интерес представляет конструкция воздушных винтов, разработанная для HSVTOL. При переходе к скоростному полету аппарат должен флюгировать лопасти и затем укладывать их вдоль гондолы. Оптимальная конструкция такого винта была создана и испытана еще в 1972 г. и показала все свои преимущества.

Складывание лопасти осуществляется при помощи шарнира в комлевой части. Какие-либо приводы отсутствуют. Лопасть должна менять свое положение только за счет набегающего потока воздуха. При этом предусматривается система торможения, управляющая скоростью перемещения лопастей.

Испытания начала семидесятых показали возможность выполнения 30-40 циклов складывания и раскладывания на скоростях 150-175 узлов (280-325 км/ч) без перерыва. Вероятно, дальнейшее развитие проекта, а также применение современных материалов и технологий позволит обеспечить работоспособность оригинальной схемы и на 400 узлах.

Теория и практика

Таким образом, проект HSVTOL пока находится на самых ранних стадиях, предусматривающих проработку основных идей и поиск технических решений. При этом строительство и испытания опытной техники все еще остается делом неопределенного будущего – пока компании-разработчику предстоит оценить реальные перспективы проекта и определить целесообразность его продолжения.

Как следует из официальных заявлений и сообщений, компания Bell Textron смотрит в будущее с оптимизмом, и дело не только в желании продемонстрировать свой интерес к перспективным разработкам. Компания имеет большой опыт и компетенции в сфере летательных аппаратов вертикального взлета. Кроме того, постоянно выдвигаются, изучаются и берутся в работу новые идеи и концепции. На основе старого опыта и современных предложений действительно могут создать технику нового класса – или даже целого семейства.

Однако излишний оптимизм вряд ли уместен. Предлагаемый концепт HSVTOL сталкивается с несколькими серьезными проблемами, без решения которых не удастся создать конвертоплан с требуемым уровнем характеристик. В ближайшем будущем компании Bell Textron и смежным организациям предстоит решить все эти вопросы – и тогда станет ясно, каким будет конвертоплан будущего.

Нагрузка двигателя

Нагрузка двигателя

#1 Сообщение Irkan » 07 мар 2017, 13:09

#2 Сообщение memto » 08 мар 2017, 21:15

Re: Нагрузка двигателя

#3 Сообщение Irkan » 09 мар 2017, 06:56

Re: Нагрузка двигателя

#4 Сообщение SAnat » 10 мар 2017, 08:15

Это цикловое наполнение.
Измеряет массу воздуха, попаюшего в цилиндры в сравнении с теоритически возможной массой в объеме мотора при нормальных условиях.

Нормальными условиями принято считать: 1 атмосфера абсолютного давления (давление атмосферы на равнине), 0 градусов Цельсия, нулевая влажность. При таких условиях в 1 литре объема мотора помещается 1.168 грамм воздуха- это и будет 100 процентным Цикловым наполнением ( Load 100).

Двигатель это просто воздушный насос, все начинается с объема всасываемого воздуха, от него уже идет рассчет впрыскиваемого топлива и т.д. по нарастающей.
Больше воздуха = равно больше топлива = больше мощность.
Количество воздуха потребляемого мотором, косвенно характеризует его мощность в л.с.
Примерный коэффициент 0,34, то есть (0,34 Х количество потребляемого воздуха в кг/ч) получите примерно мощность мотора на маховике в лошадинных силах.

Читать еще:  Цикл работы двигателя аткинсона

LOAD во фьюжене считается естественно по показаниям MAP (давляк в коллекторе) и ECT (температура ОЖ).

Что влияет на параметр:
1. Объем мотора.
2. подсос воздуха в коллектор, больший угол открытия дроссельной заслонки.
То есть сравнивая этот параметр, надо внимательно сравнивать показатели МАП (давление в коллекторе в данный момент).
3. нагрузка на двигатель (включенные электропотребители) , растет нагрузка на шкиф колена (генератор нагружен или компрессор кондея) растет и МАП , соответственно растет load
4. температура поступающего в двигатель воздуха.
Если увеличилась, то он стал более разреженным, менее плотным, соответственно его масса уменьшилась, хотя объем остался тем же. Допустим, что температура воздуха возросла настолько, что в каждый цилиндр попадает не 0.584 грамма воздуха, а уже меньше 0.575. Таким образом, цикловое наполнение (Load) снизилось с 90 процентов до 88. Тоже самое будет происходить при изменении температуры воздуха ниже 0, когда его плотность возрастает. Если при этом в цилиндр будет попадать не 0.584 грамма воздуха, а 0.600, то цикловое наполнение (Load) вырастет со 90 процентов до 92.

100% Load даже под газом в полу никогда не видел после 4000 оборотов.
Также отмечу, что load на фьюженах менее точен, так как воздух считается через МАП, а это всегда менее точный подсчет нежели ДМРВ (MAF).

Добавлено спустя 23 минуты 23 секунды:
На память уже не помню, но сейчас глянул свои видео.
На прогретом свыше 60с моторе.

1. Фьюжен зимой — 24% load (рассчет по МАП, мотор дурачек 1,4л., рядная четверка на атмосферном давлении, ремень ГРМ)
Летом вроде насколько помню, что-то в районе 19-21%
Мне давно кажется фьюж завышает лоад, как пример:

2. Опель мерива б — 8,8% (рассчет по ДМРВ, мотор экотек a14xer 1,4л., рядная четверка на атмосферном давлении, цепь однорядная)

Какие обороты считаются оптимальными для мотора

Для сохранения ресурса двигателя лучше всего ездить на таких оборотах, которые условно можно считать средними и немного выше средних. Например, если на тахометре «зеленая» зона предполагает 6 тыс. об/мин, тогда наиболее рационально держать от 2.5 до 4.5 тыс.

В случае с атмосферными ДВС конструкторы стараются уместить полку крутящего момента именно в этом диапазоне. Современные турбированные агрегаты обеспечивают уверенную тягу на более низких оборотах мотора (полка момента более широкая), но двигатель все равно лучше немного раскручивать.

Напоследок добавим, что периодически желательно раскручивать хорошо прогретый и исправный мотор с качественным маслом на 80-90% при движении по ровной дороге. В таком режиме будет достаточно проехать 10-15 км. Отметим, что данное действие не нужно повторять часто.

Опытные автолюбители рекомендуют раскручивать двигатель почти до максимума один раз в 4-5 тыс. пройденных километров. Это необходимо по разным причинам, например, чтобы стенки цилиндров изнашивались более равномерно, так как при постоянной езде только на средних оборотах может образоваться так называемая ступенька.

Настройка холостых оборотов на карбюраторном и инжекторном моторе. Особенности регулировки ХХ карбюратора, регулировка холостого хода на инжекторе.

На холостом ходу «плавают» обороты: почему так происходит. Основные неисправности, связанные с холостыми оборотами на бензиновом и дизельном двигателе.

Плавающие холостые обороты двигателя «на холодную». Основные неисправности, симптомы и выявление поломки. Неустойчивый холостой ход дизельного двигателя.

Причины вибрации и неустойчивой работы дизельного мотора в режиме холостого хода. Возможные причины и диагностика неисправностей.

Почему двигатель может не набирать обороты: бензиновый мотор, дизельный агрегат, автомобиль с ГБО. Диагностика неисправности, полезные советы.

Назначение и принцип работы датчика (регулятора) холостого хода. Симптомы неисправностей датчика холостых оборотов, проверка и калибровка РХХ.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector