Promremont34.ru

Авто мастеру
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Что значит номинальная частота вращения двигателя

Генератор поликлиновой — компонент электрической бортовой системы транспортного средства; генератор переменного тока с приводом от коленчатого вала двигателя, оснащенный шкивом под поликлиновый ремень. Генератор обеспечивает питание компонентов электрической системы автомобиля и зарядку аккумуляторной батареи.

Данные генераторы устанавливаются на бензиновые и дизельные силовые агрегаты с ременным приводом вспомогательных агрегатов, в котором передача крутящего момента от коленвала осуществляется посредством плоского поликлинового (ручейкового) ремня. Обычно это двигатели легковых и грузовых автомобилей стандарта «Евро-3» и выше (также возможно переоснащение и двигателей «Евро-2»).

Поликлиновая передача имеет ряд преимуществ перед обычной клиноременной. В передаче этого типа используется один плоский ремень, на рабочей поверхности которого выполнен несколько (от 4 до 8) продольных канавок (ручейков) треугольной (клиновой) формы. Такая форма в несколько раз увеличивает площадь контакта ремня со шкивами, чем обеспечивается надежное сцепление этих деталей и передачу крутящего момента без проскальзывания.

Но главное, что поликлиновые ремни за счет своей небольшой толщины могут нормально работать при значительных изгибах и допускают применение шкивов малого диаметра. Это имеет ряд положительных последствий:

  • Снижение массы и стоимости шкива;
  • Возможность получения большого передаточного числа без сокращения ресурса ремня (обычные клиновые ремни за счет большой толщины менее эластичны и не могут работать со шкивами меньше некоторого диметра — они проскальзывают, изнашиваются и изламываются);
  • Повышение надежности всего двигателя.

Конструктивно поликлиновые генераторы идентичны обычным, отличаясь лишь типом шкива и некоторыми характеристиками.

Мир науки

Частота вращения асинхронного двигателя определяется скоростью вращения магнитного поля и числом полюсов. Существуют два основных способа регулировать частоту вращения асинхронного двигателя: включение резисторов в цепь фазного ротора, изменение количества полюсов, образующих вращающееся магнитного поля.

Для осуществления первого способа применяются двигатели с фазными роторами. При этом в цепь двигателя вводят трехфазный реостат, который должен быть рассчитанным на длительную нагрузку током ротора. При увеличении активного сопротивления цепи изменяется характеристика М = F (s) — она становится более пологой.

Если, не изменяя момента на валу двигателя, увеличить сопротивление цепи ротора постепенным увеличением сопротивления реостата, рабочая точка сместится с одной кривой M = F (s) на другую, которая соответствует увеличенному сопротивлению цепи ротора, т. е. будет расти скольжение, и поэтому снизится частота вращения двигателя. Таким способом изменяется частота вращения ротора от номинального скольжения до абсолютной остановки. Недостатком способа являются слишком большие потери энергии.

Зная отношение величин можно сделать вывод, что доля механической мощности уменьшается с уменьшением частоты ротора, при этом возрастает величина потерь в сопротивлениях цепи ротора. Мощность, которую забирает двигатель из сети, не изменяется, т. е. для уменьшения скорости вращения двигателя необходимо включить в цепь ротора сопротивление, которое вынуждает превращаться в тепло большую часть энергии. Среди недостатков данного способа является то, что включение сопротивления уменьшает устойчивость работы двигателя, поскольку небольшое изменение нагрузки приводит к значительным изменениям частоты вращения двигателя.

Для плавного регулирования частоты вращения двигателя в цепи изменяют напряжение на зажимах статора. Такой вид регулирования применим к двигателям с короткозамкнутым ротором. Если учесть, что вращающий момент двигателей прямо пропорционален квадрату напряжения, координата механической характеристики уменьшается в отношении.

Скачкообразное изменение скоростей вращения двигателя возможно осуществить усложнением конструкций асинхронных двигателей. Оно связано с переключением числа полюсов двигателей. Подобным образом будут отличаться и частоты вращения ротора двигателя. Обмотку ротора двигателя в этом случае нужно выполнить в форме беличьего колеса, для которого количество фаз изменяется с изменением числа полюсов поля.

При этих условиях количество полюсов обмоток статора ничем не связано и выбирается любым в зависимости от условий работы двигателя. Регулирование при этом осуществляется скачкообразным изменением частоты вращения поля двигателя. Однако частоту вращения ротора нельзя изменить скачкообразно вследствие наличия инерции всей системы электропривода. Только после переключения наступает изменение частоты вращения ротора. Еще одним методом управления частотой вращения асинхронного двигателя является изменение частоты переменного тока, который питает двигатель.

При этом условии активные материалы двигателя полностью используются. Значит, изменение частоты должно сопровождаться поддержанием вращающего момента постоянным, что осуществляется изменением напряжение на зажимах статора.

При помощи детектора стробоскопического эффекта

Если двигатель находится в процессе эксплуатации, можно избежать необходимости отстыковывать его от исполнительного механизма и снимать задний кожух только для того, чтобы добраться до центровочного отверстия. Точное количество оборотов в этих случаях можно также измерить при помощи стробоскопического детектора. Для этого на вал двигателя наносят продольную риску белого цвета и устанавливают светоулавливатель прибора напротив нее.

При включении двигателя в работу прибор определит точное количество оборотов в минуту по частоте появления белого пятна. Этот метод применяется, как правило, при диагностическом обследовании мощных электрических машин и зависимости частоты вращения от приложенной нагрузки.

Механический самодельный тахометр из моторчика

Итак, приступаем к сборке. Как уже упоминалось самодельный тахометр состоит из двух основных частей: моторчика работающего от постоянного тока и вольтметра. Если такого моторчика у Вас нет, его легко можно купить на блошином рынке по цене буханки хлеба или дешевле, по цене двух буханок можно купить новый в магазине электронных компонентов. Если нет вольтметра, он обойдется дороже моторчика, однако на том же блошином рынке его цена будет вполне приемлемой. Вольтметр подключается к контактам моторчика, и все, тахометр готов. Теперь нужно испытать готовый тахометр в работе. При вращении вала моторчика-генератора будет создаваться напряжение, пропорциональное частоте вращения. Следовательно, частоте вращения будут пропорциональны и показания вольтметра.

Читать еще:  Двигатель 7511 какой ремень

Проградуировать такой тахометр можно по-разному. Например, построить справочный график зависимости напряжения от частоты вращения якоря или сделать новую шкалу вольтметра, на которой вместо воль записывается число оборотов.

Так как график отражает линейную зависимость, достаточно отметить две-три точки и провести через них прямую. Получение контрольных точек – это самый проблемный этап подготовки самодельного тахометра к работе. Если есть доступ к фирменным станкам, контрольные точки легко получить, зажав резиновую трубочку, надетую на вал моторчика, в патроне сверлильного или токарного станка и включая станок на различных передачах, фиксировать показания вольтметра (скорость вращения шпинделя на каждой передаче указана в паспорте станка). В противном случае для калибровки придется использовать либо дрель, либо двигатель при режиме работы для которого известна частота вращения. И даже если удалось измерить напряжение на контактах моторчика только для одной частоты вращения, вторая точка – это пересечение осей (x) и (y) (то есть числа оборотов и напряжения), правда точность измерений по зависимости основанной на двух точках будет низкой.

Для измерения частоты вращения, вал исследуемого двигателя соединяется с моторчиком небольшим отрезком резиновой трубки или с помощью различных переходников. Если вольтметр зашкаливает при измерении больших скоростей вращения, в схему вводится переключатель с дополнительными резисторами. Потребуется и перестроение графика для каждого положения переключателя.

Возможности прибора можно значительно расширить. Если изготовить роликовый фрикционный переходник диаметром 31,8 мм, тахометр позволит измерять и линейную скорость, выраженную в метрах в минуту. Для этого количество оборотов в минуту, определенное по графику, делят на 10.

Точность измерения зависит практически только от тщательности построения графика и цены деления вольтметра. Подобный простейший и очень дешевый самодельный тахометр может найти широкое применение всюду, где нужно быстро определить частоту или скорость вращения валов, шкивов и других деталей.

Цифровой тахометр из смартфона своими руками


Самодельный стробоскопический тахометр из iPhone своими руками


Самодельный лазерный (оптический) тахометр из iPhone своими руками


Сравнительные измерения частоты вращения двигателя лазерным и стробоскопическим тахометрами

Смотрел не давно на ютубе ролик одного блогера, как он для замера оборотов мотор-колеса купил бесконтактный тахометр. Меня это очень удивило, человек подкован в электронике, микроконтроллерах, зарабатывает на жизнь ремонтом электроники и разработкой устройств. Набор инструментов тоже богат, от мало до велика. И на мой взгляд можно было обойтись подручными инструментами… Но все мы Люди и все уникальны, поэтому осуждать друг друга не имеем права.

Но за расследование все же взялся, Шерлок Холмс к вашим услугам )))

Работая диагностом, я прекрасно знаю как определяются обороты ДВС индуктивным датчиком, поэтому за основу для определения оборотов понадобится : катушка без сердечника (предпочтительнее от реле, чтобы размах сигнала был более высокий, я этим пренебрег и низкие обороты мультиметром не измерились), мультиметр с возможностью измерения частоты (тут важен диапазон измеряемых частот, и минимальное измеряемое входное напряжение), магнит неодимовый (для создания магнитного поля) и осциллограф (в идеале).

Для частоты эксперимента, измерять обороты буду у шуруповерта, так как на этикетке есть величина этих самых оборотов. Но ни кто не мешает измерить обороты чего либо другого, главное соблюдать технику безопасности и продумать крепление магнита, чтобы он не слетел на высоких оборотах.

А дальше все просто : цепляемся мультиметром/осциллографом к катушке (катушка в моем случае от разблокировки селектора АКПП на 58 Ом, так как катушка является индуктивностью у нее есть параметр индуктивность которая измеряется в единицах Генри (мГн, мкГн) и добротность величина относительная, единицы измерения не имеет, это как величина заполнения шим сигнала). На сверло закрепляем магнит, подносим катушку максимально близко магниту, и жмем на кнопку. Дальше смотрим частоту на мультиметре/осциллографе и полученный результат умножаем на 60 секунд, для преобразования об/сек в об/мин (пример частота составила 7 об/сек * на 60 секунд = 420 об/мин).

Все написанное выше можно посмотреть на видео :

Если есть недочеты, или что то не дописал критикуйте/задавайте вопросы.

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Читать еще:  Что делать если двигатель в угоне

Избавьтесь от вышки, пересмотрите экономику проектов!

Система Colibri ESP исключает реализацию рисков, связанных с использованием ЭЦН в высокопроизводительных и глубоких оффшорных скважинах. Она эксплуатируется и извлекается с использованием усиленного несущего кабеля, что полностью исключает необходимость монтажа буровой установки.

На схеме ниже показано, почему монтаж и демонтаж Colibri ESP в 4 раза быстрее, чем у традиционного оборудования. Согласно схеме, выгода применения Colibri ESP резко возрастает в морских и удаленных скважинах.

Процесс монтажа быстрый, надежный, и не требует глушения скважины. Монтаж установки происходит через наземный лубрикатор в спущенную заранее колонну НКТ. Демонтаж установки также прост. Используется лишь грузонесущий кабель. Таким образом данную технологию можно использовать для временной эксплуатации скважины при отказе основного насоса для сокращения простоя в ожидании замены. Также установка может быть смонтирована для постоянной эксплуатации в качестве способа продления экономического срока службы скважин, которые в противном случае были бы заглушены и законсервированы во избежание затрат на капитальный ремонт и подъемное оборудование.

Эта технология также снижает риски для здоровья и безопасности персонала. Вместо полной бригады работников, необходимой для мобилизации подъемной вышки для замены традиционной УЭЦН, система Colibri может быть установлена тремя или четырьмя сотрудниками.

область применения

  • Неосложненные скважины
  • Морские и удаленные скважины
  • Месторождения как на ранней так и на поздней стадии разработки
  • Пробная эксплуатация скважин
  • Временная и постоянная эксплуатация
  • Экономичная замена газлифта в морских скважинах

возможности

  • Дебит до 3 145 барр/сут (500 м 3 /сут)
  • Напор жидкости до 9 840 футов (3000 м)
  • Температура до 355°F (180°C)

особенности

  • Конструкция монтируемого на грузонесущем кабеле УЭЦН позволяет монтировать оборудование на существующем устьевом оборудовании без глушения скважины
  • Возможно использование геофизического подъемного оборудования slickline и персонала геофизической партии
  • Установка работает в уже спущенной стандартной колонне НКТ, уменьшая риски, время, и затраты на проведение работ
  • Подходит как для временного, так и для постоянного использования
  • Комплект поставки включает пакер, клапаны и другое оборудование необходимое для заканчивания скважины для установки Colibri ESP
  • Время, необходимое для мобилизации буровой установки, замены ЭЦН и возвращения скважины в рабочий режим приводит к значительным потерям доходов у заказчиков, использующих ЭЦН

Двигатели постоянного тока

Кроме машин переменного напряжения есть электродвигатели, подключающиеся к сети постоянного тока. Число оборотов таких устройств рассчитывается по совершенно другим формулам.

Номинальная скорость вращения

Число оборотов аппарата постоянного тока рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • U – напряжение сети,
  • Rя и Iя – сопротивление и ток якоря,
  • Ce – константа двигателя (зависит от типа электромашины),
  • Ф – магнитное поле статора.

Эти данные соответствуют номинальным значениям параметров электромашины, напряжению на обмотке возбуждения и якоре или вращательному моменту на валу двигателя. Их изменение позволяет регулировать частоту вращения. Определить магнитный поток в реальном двигателе очень сложно, поэтому для расчетов пользуются силой тока, протекающего через обмотку возбуждения или напряжения на якоре.

Формула расчёта числа оборотов двигателя постоянного тока

Число оборотов коллекторных электродвигателей переменного тока можно найти по той же формуле.

Регулировка скорости

Регулировка скорости электродвигателя, работающего от сети постоянного тока, возможна в широких пределах. Она возможна в двух диапазонах:

  1. Вверх от номинальной. Для этого уменьшается магнитный поток при помощи добавочных сопротивлений или регулятора напряжения;
  2. Вниз от номинальной. Для этого необходимо уменьшить напряжение на якоре электромотора или включить последовательно с ним сопротивление. Кроме снижения числа оборотов это делается при запуске электродвигателя.

Знание того, по каким формулам вычисляется скорость вращения электродвигателя, необходимо при проектировании и наладке оборудования.

Что такое частотно-регулируемый привод?

Частотно-регулируемый привод (частотно-управляемый привод, ЧУП, Variable requency Drive, VFD) — система управления частотой вращения ротора асинхронного (синхронного) электродвигателя. Состоит из собственно электродвигателя и частотного преобразователя.

Преобразователь частоты (частотный преобразователь) — это устройство состоящее из выпрямителя (моста постоянного тока), преобразующего переменный ток промышленной частоты в постоянный и инвертора (преобразователя) (иногда с ШИМ), преобразующего постоянный ток в переменный требуемых частоты и амплитуды. Выходные тиристоры (GTO) или IGBT обеспечивают необходимый ток для питания электродвигателя. Для исключения перегрузки преобразователя при большой длине фидера между преобразователем и фидером ставят дроссели, а для уменьшения электромагнитных помех — EMC-фильтр. При скалярном управлении формируются гармонические токи фаз двигателя. Векторное управление — метод управления синхронными и асинхронными двигателями, не только формирующим гармонические токи (напряжения) фаз, но и обеспечивающим управление магнитным потоком ротора (моментом на валу двигателя).

Применение частотного привода

Преобразователи частоты применяются в:

  • судовом электроприводе большой мощности
  • прокатных станах (синхронная работа клетей)
  • высокооборотном приводе вакуумных турбомолекулярных насосов (до 100.000 об/мин.)
  • конвейерных системах
  • резательных автоматах
  • станках с ЧПУ — синхронизация движения сразу нескольких осей (до 32 — например в полиграфическом или упаковывающем оборудовании) (сервоприводы)
  • автоматически открывающихся дверях
  • мешалках, насосах, вентиляторах, компрессорах
  • бытовых кондиционерах
  • стиральных машинах
  • городском электротранспорте, особенно в троллейбусах.

Наибольший экономический эффект даёт применение ЧРП в системах вентиляции, кондиционирования и водоснабжения, где применение ЧРП стало фактически стандартом.

Преимущества применения ЧРП

  • Высокая точность регулирования
  • Экономия электроэнергии в случае переменной нагрузки (то есть работы эл. двигателя с неполной нагрузкой).
  • Равный максимальному пусковой момент.
  • Возможность удалённой диагностики привода по промышленной сети
  • распознавание выпадения фазы для входной и выходной цепей
  • учёт моточасов
  • старение конденсаторов главной цепи
  • неисправность вентилятора
  • Повышенный ресурс оборудования
  • Уменьшение гидравлического сопротивления трубопровода из-за отсутствия регулирующего клапана
  • Плавный пуск двигателя, что значительно уменьшает его износ
  • ЧРП как правило содержит в себе ПИД-регулятор и может подключатся напрямую к датчику регулируемой величины (например, давления).
  • Управляемое торможение и автоматический перезапуск при пропадании сетевого напряжения
  • Подхват вращающегося электродвигателя
  • Стабилизация скорости вращения при изменении нагрузки
  • Значительное снижение акустического шума электродвигателя, (при использовании функции «Мягкая ШИМ»)
  • Дополнительная экономия электроэнергии от оптимизации возбуждения эл. двигателя
  • Позволяют заменить собой автоматический выключатель
Читать еще:  Чери фора вибрация двигателя почему

Недостатки применения частотного привода

  • Большинство моделей ЧРП являются источником помех (требуется установка Фильтров высокочастотных помех)
  • Сравнительно высокая стоимость для ЧРП большой мощности (окупаемость минимум 1-2 года)

Применение частотных преобразователей на насосных станциях

Классический метод управления подачей насосных установок предполагает дросселирование напорных линий и регулирование количества работающих агрегатов по какому-либо техническому параметру (например, давлению в трубопроводе). Насосные агрегаты в этом случае выбираются исходя из неких расчётных характеристик (как правило, с запасом по производительности) и постоянно функционируют с постоянной частотой вращения, без учета изменяющихся расходов, вызванных переменным водопотреблением. При минимальном расходе насосы продолжают работу с постоянной частотой вращения, создавая избыточное давление в сети (причина аварий), при этом бесполезно расходуется значительное количество электроэнергии. Так, к примеру, происходит в ночное время суток, когда потребление воды резко падает. Основной эффект достигается не за счет экономии электроэнергии, а благодаря существенному уменьшению расходов на ремонт водопроводных сетей.

Появление регулируемого электропривода позволило поддерживать постоянное давление непосредственно у потребителя. Широкое применение в мировой практике получил частотно регулируемый электропривод с асинхронным электродвигателем общепромышленного назначения. В результате адаптации общепромышленных асинхронных двигателей к их условиям эксплуатации в управляемых электроприводах создаются специальные регулируемые асинхронные двигатели с более высокими энергетическими и массогабаритностоимостными показателями по сравнению с неадаптированными. Частотное регулирование скорости вращения вала асинхронного двигателя осуществляется с помощью электронного устройства, которое принято называть частотным преобразователем. Вышеуказанный эффект достигается путём изменения частоты и амплитуды трёхфазного напряжения, поступающего на электродвигатель. Таким образом, меняя параметры питающего напряжения (частотное управление), можно делать скорость вращения двигателя как ниже, так и выше номинальной. Во второй зоне (частота выше номинальной) максимальный момент на валу обратно пропорционален скорости вращения.

Метод преобразования частоты основывается на следующем принципе. Как правило, частота промышленной сети составляет 50 Гц. Для примера возьмём насос с двухполюсным электродвигателем. С учетом скольжения скорость вращения двигателя составляет около 2800 (зависит от мощности) оборотов в минуту и даёт на выходе насосного агрегата номинальный напор и производительность (так как это его номинальные параметры, согласно паспорту). Если с помощью частотного преобразователя понизить частоту и амплитуду подаваемого на него переменного напряжения, то соответственно понизятся скорость вращения двигателя, и, следовательно, изменится производительность насосного агрегата. Информация о давлении в сети поступает в блок частотного преобразователя от специального датчика давления, установленного у потребителя, на основании этих данных преобразователь соответствующим образом меняет частоту, подаваемую на двигатель.

Современный преобразователь частоты имеет компактное исполнение, пыле и влагозащищённый корпус, удобный интерфейс, что позволяет применять его в самых сложных условиях и проблемных средах. Диапазон мощности весьма широк и составляет от 0,18 до 630 кВт и более при стандартном питании 220/380 В и 50-60 Гц. Практика показывает, что применение частотных преобразователей на насосных станциях позволяет:

  • экономить электроэнергию (при существенных изменениях расхода), регулируя мощность электропривода в зависимости от реального водопотребления (эффект экономии 20-50 %);
  • снизить расход воды, за счёт сокращения утечек при превышении давления в магистрали, когда расход водопотребления в действительности мал (в среднем на 5 %);
  • уменьшить расходы (основной экономический эффект) на аварийные ремонты оборудования (всей инфраструктуры подачи воды за счет резкого уменьшения числа аварийных ситуаций, вызванных в частности гидравлическим ударом, который нередко случается в случае использования нерегулируемого электропривода (доказано, что ресурс службы оборудования повышается минимум в 1,5 раза);
  • достичь определённой экономии тепла в системах горячего водоснабжения за счёт снижения потерь воды, несущей тепло;
  • увеличить напор выше обычного в случае необходимости;
  • комплексно автоматизировать систему водоснабжения, тем самым снижая фонд заработной платы обслуживающего и дежурного персонала, и исключить влияние «человеческого фактора» на работу системы, что тоже немаловажно.

По имеющимся данным срок окупаемости проекта по внедрению преобразователей частоты составляет от 3 месяцев до 2 лет.

Потери мощности при торможении электродвигателя

Во многих установках на регулируемый электропривод возлагаются задачи не только плавного регулирования момента и скорости вращения электродвигателя, но и задачи замедления и торможения элементов установки. Классическим решением такой задачи является система привода с асинхронным двигателем с преобразователем частоты, оснащённым тормозным переключателем с тормозным резистором.

При этом в режиме замедления/торможения электродвигатель работает как генератор, преобразуя механическую энергию в электрическую, которая в итоге рассеивается на тормозном резисторе. Типичными установками, в которых циклы разгона чередуются с циклами замедления являются тяговый привод электротранспорта, подъёмники, лифты, центрифуги, намоточные машины и т. п. Функция электрического торможения вначале появилась на приводе постоянного тока (например, троллейбус). В конце ХХ века появились преобразователи частоты со встроенным рекуператором, которые позволяют возвращать энергию, полученную от двигателя, работающего в режиме торможения, обратно в сеть. В этом случае, установка начинает «приносить деньги» фактически сразу после ввода в эксплуатацию.

Принцип работы частотного преобразователя

Остались вопросы?
Специалисты ЭНЕРГОПУСК ответят на Ваши вопросы:
8-800-700-11-54 (8-18, Пн-Вт)

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector