Promremont34.ru

Авто мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Давление наддува турбины дизельного двигателя мерседес

Турбонаддув — один из методов агрегатного наддува, основанный на утилизации энергии отработавших газов. Основной элемент системы — турбокомпрессор

История изобретения
Принцип турбонаддува был запатентован Альфредом Бюхи в 1911 году в патентном ведомстве США. Номер патента (1006907 October 1911 Buchi).

История развития турбокомпрессоров началась примерно в то же время, что и постройка первых образцов двигателей внутреннего сгорания. В 1885—1896 г. Готлиб Даймлер и Рудольф Дизель проводили исследования в области повышения вырабатываемой мощности и снижения потребления топлива путем сжатия воздуха, нагнетаемого в камеру сгорания. В 1905 г. швейцарский инженер Альфред Бюхи впервые успешно осуществил нагнетание при помощи выхлопных газов, получив при этом увеличение мощности на 40%. Это событие положило начало постепенному развитию и внедрению в жизнь турботехнологий.

Сфера использования первых турбокомпрессоров ограничивалась чрезвычайно крупными двигателями, в частности, корабельными. В авиации с некоторым успехом турбокомпрессоры использовались на истребителях с двигателями Рено ещё во время Первой Мировой войны. Ко второй половине 1930-х развитие технологий позволило создавать действительно удачные авиационные турбонагнетатели, которые у значительно форсированных двигателей использовались в основном для повышения высотности. Наибольших успехов в этом достигли американцы, установив турбонагнетатели на истребители P-38 и бомбардировщики B-17 в 1938 году. Уже в годы войны в США был создан истребитель P-47 с очень мощным турбонагнетателем, который был сделан отключаемым и использовался для форсажа, резко увеличивая мощность и расход топлива.

В автомобильной сфере первыми начали использовать турбокомпрессоры производители грузовых машин. В 1938 г.на заводе «Swiss Machine Works Sauer» был построен первый турбодвигатель для грузового автомобиля. Первыми легковыми автомобилями, оснащенными турбинами были Chevrolet Corvair Monza и Oldsmobile Jetfire, вышедшие на американский рынок в 1962—1963 г. Несмотря на очевидные технические преимущества, низкий уровень надежности привел к быстрому исчезновению этих моделей.

Начало использования турбодвигателей на спортивных автомобилях, в частности на Formula 1, в 70-х годах привело к значительному увеличению популярности турбокомпрессоров. Приставка «турбо» стала входить в моду. В то время, почти все производители автомобилей предлагали как минимум одну модель с бензиновым турбодвигателем. Однако, по прошествии нескольких лет, мода на турбодвигатели начала проходить, так как выяснилось, что турбокомпрессор, хотя и позволяет увеличить мощность бензинового двигателя, сильно увеличивает расход топлива. На первых порах задержка в реакции турбокомпрессора была достаточно большой, что также являлось серьезным аргументом против установки турбины на бензиновый двигатель.

Коренной перелом в развитии турбокомпрессоров произошел с установкой в 1977 г. турбокомпрессора на серийный автомобиль Saab 99 Turbo и затем, в 1978 г. выпуском Mercedes-Benz 300 SD, первого легкового автомобиля, оснащенного дизельным турбодвигателем. В 1981 г. за Mercedes-Benz 300 SD последовал VW Turbodiesel. При помощи турбокомпрессора производителям удалось увеличить эффективность работы дизельного двигателя до уровня бензинового, сохранив при этом значительно более низкий уровень выброса в атмосферу выхлопных газов. Вообще, дизельные двигатели имеют повышенную степень сжатия и, в следствие адиабатного расширения на рабочем ходе, их выхлопные газы имеют более низкую температуру. Это снижает требования к жаропрочности турбины, и позволяет делать более дешёвые или более изощрённые конструкции. Именно поэтому турбины на дизельных двигателях встречаются гораздо чаще, чем на бензиновых, а большая часть новинок (например, турбины с изменяемой геометрией) сначала появляется именно на дизельных двигателях.

Принцип работы
Принцип работы основан на использовании энергии отработавших газов. Поток выхлопных газов попадает на крыльчатку турбины (закреплённой на валу), тем самым раскручивая её и находящиеся на одном валу с нею лопасти компрессора, нагнетающего воздух в цилиндры двигателя. Так как при использовании наддува воздух в цилиндры подаётся принудительно (под давлением), а не только за счёт разрежения, создаваемого поршнем (это разрежение способно взять только определённое количество смеси воздуха с топливом), то в двигатель попадает большая смесь воздуха с топливом. Как следствие, при сгорании увеличивается объём сгораемого топлива с воздухом, образовавшийся газ занимает больший объём и соответственно возникает большая сила, давящая на поршень.

Как правило, у турбодвигателей меньше удельный эффективный расход топлива (грамм на киловатт-час, г/(кВт·ч)), и выше литровая мощность (мощность, снимаемая с единицы объёма двигателя — кВт/л), что даёт возможность увеличить мощность небольшого мотора без увеличения оборотов двигателя.

Вследствие увеличения массы воздуха, сжимаемой в цилиндрах, температура в конце такта сжатия заметно увеличивается и возникает вероятность детонации. Поэтому, конструкцией турбодвигателей предусмотрена пониженная степень сжатия, применяются высокооктановые марки топлива, а также в системе предусмотрен промежуточный охладитель наддувочного воздуха (интеркулер), представляющий собой радиатор для охлаждения воздуха. Уменьшение температуры воздуха требуется также и для того, чтобы плотность его не снижалась вследствие нагрева от сжатия после турбины, иначе эффективность всей системы значительно упадёт. Особенно эффективен турбонаддув у дизельных двигателей тяжёлых грузовиков. Он повышает мощность и крутящий момент при незначительном увеличении расхода топлива. Находит применение турбонаддув с изменяемой геометрией лопаток турбины, в зависимости от режима работы двигателя.

Читать еще:  103 двигатель как выставить грм

ну и немножко анимации

Сервис и запчасти Мерседес Атего
8(495)643-1024
8(800)707-1024

Устройство турбокомпрессора автомобиля

Система турбонаддува используется не только в дизельных, но и в бензиновых двигателях.

Система турбонадува состоит из следующих элементов:

  • Турбокомпрессора;
  • Интеркулера;
  • Перепускного клапана;
  • Регулировочного клапана;
  • Выпускного коллектора.

Как устроена турбина?

Ознакомьтесь подробнее со строением турбокомпрессора в инфографике:

Конструкция турбокомпрессора

В общем случае турбокомпрессор состоит из трех основных узлов:

  1. Турбина;
  2. Компрессор;
  3. Корпус подшипников (центральный корпус).

Турбина — агрегат, преобразующий кинетическую энергию отработавших газов в механическую энергию (в крутящий момент колеса), которая обеспечивает работу компрессора. Компрессор — агрегат для нагнетания воздуха. Корпус подшипников связывает оба агрегата в единую конструкцию, а расположенный в нем вал ротора обеспечивает передачу крутящего момента от колеса турбины на колесо компрессора.

Турбина и компрессор имеют схожую конструкцию. Основой каждого из этих агрегатов выступает корпус-улитка, в периферийной и центральной части которого расположены патрубки для соединения с системой наддува. У компрессора впускной патрубок всегда находится в центре, выпускной (нагнетательный) — на периферии. Такое же расположение патрубков у осевых турбин, у радиально-осевых турбин расположение патрубков обратное (на периферии — впускной, в центре — выпускной).

Внутри корпуса располагается колесо с лопатками специальной формы. Оба колеса — турбинное и компрессорное — удерживаются общим валом, который проходит через корпус подшипников. Колеса — цельнолитые или составные, форма лопаток турбинного колеса обеспечивает максимально эффективное использование энергии отработавших газов, форма лопаток компрессорного колеса обеспечивает максимальный центробежный эффект. В современных турбинах высокого класса могут использоваться составные колеса с керамическими лопатками, которые имеют низкую массу и обладают лучшими характеристиками. Размер колес турбокомпрессоров автомобильных двигателей — 50-180 мм, мощных тепловозных, промышленных и иных дизелей — 220-500 и более мм.

Оба корпуса монтируются на корпус подшипников с помощью болтов через уплотнения. Здесь располагаются подшипники скольжения (реже — подшипники качения специальной конструкции) и уплотнительные кольца. Также в центральном корпусе выполняются масляные каналы для смазки подшипников и вала, а в некоторых турбокомпрессорах и полости водяной рубашки охлаждения. При монтаже агрегат соединяется с системами смазки и охлаждения двигателя.

В конструкции турбокомпрессора могут быть предусмотрены и различные вспомогательные компоненты, в том числе детали системы рециркуляции отработавших газов, масляные клапаны, элементы для улучшения смазки деталей и их охлаждения, регулировочные клапаны и т.д.

Детали турбокомпрессора изготавливаются из специальных марок стали, для колеса турбины применяются жаропрочные стали. Материалы тщательно подбираются по коэффициенту температурного расширения, что обеспечивает надежность конструкции на различных режимах работы.

Турбокомпрессор включается в систему наддува воздуха, в которую также входят впускной и выпускной коллекторы, а в более сложных системах — интеркулер (радиатор охлаждения наддувного воздуха), различные клапаны, датчики, заслонки и трубопроводы.

Супертурбо: все продвинутые системы наддува

Я предельно упростил формулировки, чтобы текст был доступен для понимания широкому кругу читателей. Но для лучшего понимания вопроса рекомендую прочитать мои прошлые публикации о видах наддува и надежности турбомоторов .

Прогресс не стоит на месте, и каждое новое поколение автомобилей должно быть быстрее, экономичнее и мощнее. Часто для повышения мощности используются комбинированные системы наддува, да и «обычные» турбины вовсе не так просты, как кажется на первый взгляд. Каким же образом инженеры научили турбомоторы быть одновременно мощными, эластичными и экономичными? Какие технологии позволяют создавать массовые двигатели с удельной мощностью в 150 л.с. на литр и отличной тягой на низах, и тысячесильных монстров?

«Обычная» турбина

Как я уже писал, турбокомпрессор прост на первый взгляд, но является высокотехнологичным устройством, которое работает в очень жестких условиях. И любое его усложнение сильно сказывается на надежности. Для примера я постараюсь подробнее описать устройство типичного турбокомпрессора без особых усложнений.

Основной частью турбокомпрессора является средний корпус, в нем расположены подшипники скольжения, упорный подшипник и седло уплотнения с кольцами. В самом корпусе есть каналы для прохождения через него масла и охлаждающей жидкости. На совсем старых конструкциях обходились только маслом и для смазки и для охлаждения, но такие турбины не применяются на серийных машинах уже давно. Для предохранения среднего корпуса от воздействия горячих выхлопных газов служит жароотражатель.

Читать еще:  Что лучше двигатель tsi или атмосферник

В средний корпус устанавливается турбинный вал. Эта деталь не просто вал, конструктивно он соединен с турбинным колесом неразъемным соединением, чаще всего сваркой трением или выполнен из цельного куска металла. Иногда для создания крыльчатки используется керамика-прочности и коррозийной устойчивости лучших конструкционных сталей может не хватать. Сам вал имеет сложную форму, на нем есть утолщение для уплотнения и упорный выступ, а форма цилиндрической части рассчитана с учетом теплового расширения во время работы.

На турбинный вал надевается компрессорное колесо. Оно изготовлено обычно их алюминия и фиксируется на валу гайкой.

Конструкция из среднего корпуса, установленного в него турбинного вала и компрессорного колеса называется картриджем. После сборки этот узел тщательно балансируется, ведь работает он при очень высоких оборотах и малейший дисбаланс быстро выведет его из строя.

Еще турбине нужны две «улитки» — турбинная и компрессорная. Часто они индивидуальны для каждого производителя машин, тогда как центральная часть — картридж и размеры турбинного и компрессорного колеса являются признаками конкретной модели турбины и ее модификации.

Для предохранения от слишком высокого давления наддува используется клапан сброса давления газов, он же вастегейт. Обычно он является частью турбинной улитки и управляется вакуумом. Он закрыт при обычном режиме работы турбины и открывается в случае слишком высокого давления наддува или других проблем в работе мотора, сбрасывая скорость вращения турбины.

А теперь о том, как используют турбины и какие технологии применяют, чтобы достичь самых высоких показателей моторов.

Twin-turbo и Bi-turbo

Чем больше и мощнее мотор, тем больше воздуха нужно подавать в цилиндры. Для этого нужно сделать турбину больше или быстрее. А чем больше размер турбины, тем тяжелее ее крыльчатки и тем инерционнее она получается. При нажатии на педаль газа открывается дроссельная заслонка и больше горючей смеси попадает в цилиндры. Образуется больше выхлопных газов и они раскручивают турбину до более высокой частоты вращения, что, в свою очередь, увеличивает количество подаваемой горючей смеси в цилиндры. Чтобы сократить время раскрутки турбин и сопутствующую им «турбояму», изначально испробовали способы, которые называются твин-турбо и би-турбо.

Это две разные технологии, но маркетологи компаний-производителей внесли немало путаницы. Например, на Maserati Biturbo и Mercedes AMG Biturbo на самом деле используют технологию твин-турбо. Так в чем же разница? Изначально Twin Turbo («турбины-близнецы») называлась технология, при которой выхлопные газы разделялись на два равных потока и распределялись на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».

Фото:twin turbo Nissan

Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.

Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.

Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.

Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.

Тонкое управление вастегейтом

Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.

Читать еще:  Горит сигнализатор неисправности двигателя ваз 2114

Получить качественный скачок характеристик позволяла плавная регулировка степени открытия перепускного клапана. В этом случае турбина может чаще работать с максимальной отдачей, даже при малых оборотах, а на средних нагрузках уже вступает в действие регулирование и в опасные режимы турбина не переходит.

К сожалению, такой способ сложнее. Для его реализации потребовалось разместить электропривод регулировки рядом с турбиной, что понизило ее надежность: электронике приходится работать в очень жестких условиях, при высокой температуре и высокой вибрации. Но улучшение характеристик стоит того и почти все современные турбины высокофорсированных небольших моторов имеют такую конструкцию.

Более эффективное турбинное колесо. Twinscroll

В поисках повышения эффективности одиночной турбины конструкторская мысль придумала способ, который позволял увеличить эффективность работы турбины и на малых и на больших нагрузках. Турбинное колесо, на которое воздействуют выхлопные газы, разделили на две части, отсюда и название технологии – twin scroll (“двойная улитка”), одна часть турбины более эффективна на большой нагрузке, а другая — на малой, но раскручивают они одно и то же компрессорное колесо на общем валу. Турбина получается не намного сложнее, но несколько эффективнее.

Двигатель Mercedes OM642

Двигатели OM642 — семейство 6-цилиндровых V-образных дизельных моторов с непосредственным впрыском топлива и турбонагнетателем от компании Mercedes-Benz, выпускающееся с марта 2005 года. Рабочий объем дизеля OM642 составляет 3 литра, угол развала блока – 72 градуса (что совсем нетипично для V-образного мотора). В развале блока цилиндров установлена единственная турбина с регулируемой геометрией направляющего аппарата.

Мотор имеет алюминиевый корпус с пересекающимися распорками. Цилиндры в нём оснащены чугунными гильзами, что способствует упрочнению и надёжности эксплуатации. Шатуны стальные, а коленвал сделан из сверхпрочного материала, с обширной поверхностью опоры вала.

Технические характеристики

Вид двигателяДизельный
Начало выпуска03/2005
Мощность, кВт при Об/мин140-170 при 3800
Мощность, л.с. при Об/мин190-231 при 3800
Объем, куб.см.2987
Количество цилиндров6
Количество клапанов24
Степень сжатия18.0:1
Диаметр цилиндра, мм83
Ход поршня, мм92
Подшипники коленвала4
Форма двигателяV6
Вид горючегодизельное топливо
Подача горючей смесинепосредственный впрыск топлива Common Rail 3
ТурбинаVTG с изменяемой геометрией турбины
Норма выхлопных газовЕвро-4
Головка циллиндраDOHC
ГРМцепь
Охдаждениеводяное охлаждение

Картер двигателя выполнен из литого под давлением алюминия со сквозной поперечной распоркой и гильзами цилиндра из серого чугуна, что способствует уменьшению массы двигателя. Инжекторы выполнены в виде форсунок с 8 отверстиями. Впускной и наддувочный тракты с оптимизированным потоком воздуха улучшают смену заряда. Охладитель наддувочного воздуха позволяет снизить температуру наддувочного воздуха до 95°C.

Пьезоинжекторы позволяют производить до 5 впрысков за цикл. Что позволяет уменьшить шумность двигателя, и одновременно с этим улучшить отзывчивость и динамичность. Турбонагнетатель VTG позволяет развивать как высокую мощность, так и высокий крутящий момент уже на низких оборотах. Электрорегулировка турбонагнетателя обеспечивает быстрое и точное регулирование давления наддува, сводя ошибки дозирования и наддува к минимуму

Особенности инжекторов двигателя:

  • управление впрыском осуществляется электронным блоком управления;
  • инжекторы исполнены в виде форсунок, имеют восемь отверстий;
  • наддув осуществляется компрессором типа VTG с переменной длиной турбины;
  • впускной коллектор оснащён дополнительным каналом для прохождения воздуха;

Для улучшения экологических характеристик применяется охлаждаемая система рециркуляции отработанных газов (AGR). В работе данной системы задействованы несколько деталей:

  • восстановление фильтра производится без применения добавочных элементов;
  • катализатор селективного типа задерживает аммиак, образующийся в ходе сгорания дизельного топлива, подготавливая вещество к дальнейшей реакции по сокращению выбросов;
  • одновременно SCR выполняет функцию фильтра, задерживающего запахи серы и прочее.

Характерные неисправности OM642

Куча всевозможных датчиков, регулируемое поступление воздуха, способность скидывать лишнее давление — всё это не гарантирует безотказную работу агрегата. Если невнимательно относиться к чистоте двигателя, он может не дотянуть до конца эксплуатационного срока. Для OM 642 характерны некоторые «болячки», которые присущи всем дизелям:

  • загрязнение сажей впускного коллектора;
  • заклинивание клапана EGR;
  • заклинивание и обрыв тяги вихревых заслонок;
  • течь масла из-под теплообменника;
  • растрескивание стального выпускного коллектора;
  • неисправности топливных форсунок.

Расшифровка маркировки

OMДВС, работающий на дизельном топливе
642Тип двигателя: 6-цилиндровый с V-образным расположением.

В целом V-образная дизельная «шестерка» получилась довольно надежной и неприхотливой. У нее даже близко нет тех проблем, которые возникали на бензиновых моторах, выпускавшихся в то же время и устанавливавшихся на тех же автомобилях.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector