Promremont34.ru

Авто мастеру
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Фазное управление оборотами двигателя

Все современные технические решения образованы в начале второй половины XX века. Глупо считать учебники того времени устаревшими. Нельзя обойти благодарностью Шубенко В.А., Браславского И.Я. и остальной коллектив авторов, приготовивших для читателей столь замечательный материал.

Тиристоры так часто используются в регуляторах, что давно уже вытеснили транзисторы. Это объясняется высокими эксплуатационными и энергетическими характеристиками в роли управляемых вентилей. Основным преимуществом считается плавность настройки параметров. Хотя в ранних моделях и современных это реализуется принципиально иными путями. В результате привод характеризуется рядом положительных качеств:

  1. Повышенный КПД;
  2. Быстродействие;
  3. Резко очерченная форма управляющего сигнала;
  4. Дешевизна;
  5. Простота;
  6. Небольшие размеры.

Тиристорные регуляторы сегодня найдутся везде. В стиральных машинах изменяют плавно скорость вращения вала путём отсечки тока, в кухонных комбайнах по величине искрения подстраивают потребляемую мощность для стабилизации оборотов. Ранее тиристорные регуляторы применялись исключительно для асинхронных двигателей, преимущественно в паре с короткозамкнутым ротором. Сегодня принципиально новые технические решения намного раздвинули границы указанной отрасли. Уже в 60-е годы схемы применялись по двум направлениям:

  • Настройка амплитуды питающего напряжения.
  • Преобразование частоты питающего напряжения.

Первая методика считается универсальной и годится для абсолютного большинства двигателей. Вторая демонстрирует ограничения, на современном этапе в бытовых приборах встречается крайне редко, отвоевав сегмент среди промышленных применений. В домашнем оборудовании нынче применяется иная методика – отсечка тока (фазовый метод). Часть периода ключ пропускает переменное напряжение, в остальное время закрывается. Такой режим характеризуется минимальными затратами энергии при приемлемых характеристиках.

Архитектура систем управления двигателями

Системы управления двигателем

На приведенной выше схеме показаны стандартные блоки системы управления двигателем в зависимости от типа двигателя, области его применения, уровня управления и мониторинга.

Контроллер – это устройство управления, микроконтроллер или ЦСП, который воспринимает такие команды, как направление, скорость и крутящий момент. Он необходим для генерации одного или нескольких сигналов для приведения в действие мотора. Управление обычно осуществляется посредством ШИМ. Контроллер также может быть снабжен обратной связью в виде измерения тока и положения, чтобы обеспечить более точное управление, защиту двигателя и обнаружение неисправности.

Читать еще:  406 двигатель технические характеристики карбюратора

Привод — в большинстве случаев привод необходим для усиления сигналов, образуемых контроллером для обеспечения достаточной мощности двигателя.

Датчики — шунты и датчики с эффектом Холла могут использоваться для измерения фактического тока, тем самым обеспечивая обратную связь. Получение данных о положении двигателя осуществляется через индуктивный датчик, датчик Холла или энкодер. Затем эта обратная связь может использоваться для реализации более сложного управления «замкнутым контуром» и получения актуальной информации об условиях работы электродвигателя, что обеспечивает улучшенный контроль над выходными параметрами электродвигателя.

Фильтрация — используется в системах управления двигателями для подавления источников электромагнитных помех. Обычно такими элементами фильтрации выступают ферритовые сердечники и катушки индуктивности.

Изоляция — гальваническая развязка часто используется для изоляции контроллера двигателя от остальной системы, которая может быть чувствительна к импульсным помехам, а также иметь различный потенциал земли.

Регулятор скорости асинхронного двигателя

Помимо образцов регуляторов, промышленных образцов регуляторов существует возможность самостоятельного выполнения регуляторов скорости бесколлекторных двигателей, не уступающих промышленным образцам. За основу схемы берется пример регулятора промышленного производства, ее можно собрать своими силами.

Что такое регулятор оборотов электродвигателя

Рис №3. Электрическая схема регулятора скорости вращения бесколлекторного двигателя.

Регулировать количество оборотов вращения вала бесколлекторного асинхронного электродвигателя допускается также при изменении значения переменного напряжения, подаваемого к двигателю.

В состав регулятора входит задающий генератор, он служит для изменения частоты в границах значений 50 – 200 Гц. Генератор состоит из мультивибратора, работа, которого строится на микросхеме К561ЛА7 и счетчика-дешифратора марки К561ИЕ8 с коэффициентом пересчета – 8, она отвечает за формирование сигналов управления силовыми полевыми транзисторами полумоста.

В схеме присутствует выходной трансформатор Т-1. Он служит для развязки транзисторов полумоста.

Выпрямитель включает в свою конструкцию диодный мост и удваивающие напряжение питания – конденсаторы с большой емкостью.

Диодный мост подключен по нетрадиционной схеме. С4 и R7 выполняют роль демпфирующей цепи, она служит для сглаживания всплесков напряжения, которые представляют собой опасность для транзисторов VТ4.

Читать еще:  В какую сторону крутится двигатель 4м40

Необходимо помнить, что обе вторичные обмотки должны обладать хорошей изоляцией друг от друга, между обмотками присутствует высокий потенциал, он составляет 640В, они подключаются к затворам транзисторных ключей в противофазе.

Такой регулятор может управлять вращением асинхронного двигателя с максимальным значением рабочей мощности – 500Вт. Чтобы регулятор использовать для регулировки электродвигателей более высокой мощности нужно применить большее количество силовых ключей, а также изменить в сторону увеличения емкость конденсаторов для питающего фильтра, это элементы схемы С3 и С4. Для регулятора достаточно использовать печатную плату размером 110 х 80 мм. Управляющий силовыми транзисторными ключами трансформатор монтируется отдельно от блока регулятора.

Регулировка скорости крановых электродвигателей

Если при плавном запуске электродвигателя с фазным ротором управление переключением сопротивлений происходит автоматически, то на кране этим управляет оператор – крановщик. Для этого в его кабине размещаются органы управления – контроллеры (на старых кранах) или джойстики (на современных). Они имеют два направления движения: «вперед-назад», «влево-вправо» или «вверх-вниз», в зависимости от назначения контроллера (управление мостом, тележкой или подъемом груза соответственно). В каждом из направлений рукоятка управления проходит ряд фиксированных положений. Чем дальше положение от рукоятки от средней точки, в которой привод выключен, тем больше скорость вращения электромотора. И тем быстрее происходит перемещение механизма или подъем (опускание) груза.

Типовая схема управления электродвигателем крана

При изменении направления перемещения рукоятки управления изменяется направление вращения электродвигателя. Это происходит за счет переключения чередования фаз питания обмотки статора. Для этого две фазы меняются местами. Происходит это путем подачи напряжения на обмотку реверсивными контакторами, состоящих из двух элементов: контактора «Вперед» и контактора «Назад».

При переключении скоростей другими контакторами из цепи обмотки ротора удаляется часть резисторов. Первое положение рукоятки управления всегда включает электродвигатель с полным набором сопротивлений в цепи ротора. Крайнее положение рукоятки шунтирует все сопротивления.

Читать еще:  Что делать с двигателем от классики

Проверка электродвигателя с фазным ротором

Для проверки обмоток статора трехфазного АД на целостность, необходимо добраться до клемм их подключения. Затем нужно произвести замеры сопротивлений между фазными клеммами по отдельности, предварительно сняв перемычки. Если сопротивление какой-либо обмотки меньше, чем у других, это свидетельствует о замыкании между ее витками. В этом случае двигатель отдается на перемотку.

Для проверки обмоток ротора, необходимо отыскать выводы от контактных колец. Затем нужно убедиться, что сопротивления обмоток совпадают. Если конструкция электродвигателя предусматривает наличие системы отключения обмоток ротора, отсутствие контакта может быть обусловлено именно поломкой данного механизма, а не обрывом витков.

О наличие какой-либо неисправности АД могут свидетельствовать следующие факторы:

  • Снижение скорости вращения при нагрузке. Характерно для высокого сопротивления в цепи ротора, слабого контакта в его обмотке, низкого напряжения электросети
  • Разворачивание АД, когда цепь ротора разомкнута – КЗ в обмотке ротора
  • Чрезмерное равномерное повышение температуры двигателя – длительная перегрузка АД или его недостаточное охлаждение
  • Нагрев статорной обмотки местного характера – двойное замыкание катушек статора на корпус или между фазами, КЗ между витками, неверное подключение катушек в фазе между собой
  • Нагрев стали статора местного характера – нарушение изоляции между листами стали, их оплавление и выгорание, замыкание
  • Посторонний шум при работе АД. Может быть вызван как выходом из строя подшипников, так и недостаточной запрессовкой активной стали. Определяется на слух по характеру постороннего шума
  • Перегорание в обмотке якоря предохранителей, отсутствие контакта в подводящей проводке, выход из строя реостата

Для самостоятельной диагностики и исправления неисправностей электродвигателя необходимыми являются хотя-бы минимальные познания в устройстве АД и электрических цепях в целом. Все же крайне не рекомендуется самостоятельно заниматься ремонтом электродвигателя с фазным ротором, так как это может привести к поражению электрическим током.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector