Promremont34.ru

Авто мастеру
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Гидродинамический двигатель что это

По каким критериям выбирают аппараты гидродинамической очистки

Как выбрать машину высокого давления? Читайте в нашей статье.

Как выбрать машину высокого давления для очистки труб и поверхностей

Гидродинамические аппараты или машины высокого давления широко используются для выполнения большого количества очистных работ. Принцип действия оборудования основан на направленной подаче струи воды под большим давлением. Под ее воздействием в трубопроводе происходит смывание со стенок наслоений грязи, ила и других вредных веществ.

Что вы узнаете из этой статьи:

реактивное движение

Максимальная скорость привычных водных транспортных средств ограничена. В их двигателях происходит непрямое преобразование химической энергии топлива в энергию движения воды: через преобразование в механическую энергию различного рода движителей (гребных винтов, турбин, насосов). Неизбежные при непрямом преобразовании потери приводят к ограничению на максимальную скорость — на уровне 100-130 км/ч (это связано с кавитацией, разрушающей лопасти винтов, импеллеров и др.). Но это ограничение преодолеть можно.

В Центре импульсно-детонационного горения (Центр ИДГ) при Институте химической физики им. Н.Н. Семенова Российской академии наук (ИХФ РАН) разработаны, созданы и испытаны экспериментальные образцы прямоточного импульсно-детонационного гидрореактивного движителя, работающие на иных физических принципах и не имеющие мировых аналогов. В новом движителе происходит прямое преобразование химической энергии топлива в энергию движения воды. В результате надводному объекту сообщается гидрореактивная тяга, ускоряющая его до скоростей, недостижимых при использовании традиционных движителей. Отличительная особенность нового движителя — применение наиболее энергоэффективного и энергосберегающего рабочего цикла: цикла Зельдовича* с управляемым детонационным горением смеси моторного топлива с окислителем. Кроме того, в нем нет подвижных механических частей.

Экспериментальные образцы спроектированы специалистами ИХФ РАН на основе гидродинамических расчетов, позволивших оптимизировать параметры движителя. Конструкция и принцип работы движителя просты (рис. 1). Он представляет собой водовод (профилированную трубу с водозаборным устройством и соплом, погруженную в воду) с введенной в него импульсно-детонационной трубкой. Импульсно-детонационная трубка — сердце движителя — предназначена для генерации коротких, но очень интенсивных периодических импульсов давления в виде ударных волн, выходящих в водовод и выбрасывающих забортную воду из водовода через сопло. Каждый импульс давления в импульсно-детонационной трубке — это детонационная волна, образованная в результате зажигания топливной смеси и последующего быстрого, но управляемого перехода горения в детонацию — ускорения пламени от

2000 м/c. Каждая ударная волна, выходящая в водовод, вовлекает воду в движение к соплу и, следовательно, придает движителю импульс силы — реактивной тяги.

Рис. 1. Схема плоского прямоточного водометного движителя

Важнейший фактор, влияющий на передачу количества движения от ударной волны к воде, а значит, и на энергоэффективность,— это сжимаемость воды, которая сильно зависит от содержания в ней газов. Вода в таком движителе всегда насыщена пузырьками с газообразными продуктами детонации предыдущего цикла, а при высокой скорости — еще и кавитационными пузырьками. Сжимаемость пузырьковой среды велика, больше, чем сжимаемость чистого газа. Расчет показывает, что при газосодержании в 20-25% прибавка скорости воды за ударной волной в водоводе может достигать 30-40 м/c.

На рис. 2 показан пример расчета одного цикла (частота циклов 10 Гц) на установившемся режиме работы плоского прямоточного импульсно-детонационного гидрореактивного движителя (ИДГРД) при набегающем со скоростью 5 м/с потоке воды. Сверху вниз на шести картинках показана эволюция распределения объемной доли. Верхняя и нижняя картинки очень похожи, значит, начальные условия для каждого рабочего цикла хорошо воспроизводятся. К такому же выводу приводит рис. 3, на котором показана расчетная зависимость мгновенной тяги движителя от времени в первых семи рабочих циклах. Повторяемость формы импульсов достигается уже после двух-трех начальных «выстрелов», а средняя тяга в них положительна, то есть направлена против набегающего потока воды. Если разделить значение средней тяги на секундный расход топливной смеси, придем к ключевому показателю энергоэффективности — удельному импульсу тяги. Расчеты показали, что такой прямоточный движитель может иметь удельный импульс на уровне 400 с при начальном давлении топливной смеси в импульсно-детонационной трубке, близком к атмосферному. Это выше, чем у самых современных ракетных двигателей (200-300 с на уровне моря) при очень высоком давлении в их камере сгорания.

Рис. 2. Рабочий цикл прямоточного импульсно-детонационного гидрореактивного движителя при частоте 10 Гц. Красный цвет соответствует газу, синий — воде, а промежуточные цвета — воде с разным объемным газосодержанием. Расчет проведен для половины движителя

Рис. 3. Расчетная зависимость мгновенной тяги прямоточного импульсно-детонационного гидрореактивного движителя от времени при рабочей частоте 10 Гц. Горизонтальная штриховая линия — средняя тяга после нескольких первых циклов

На рис. 4 показана схема экспериментального образца импульсно-детонационного гидрореактивного движителя (ЭО ИДГРД). Как и в расчетной схеме (см. рис. 1), ЭО состоит из импульсно-детонационной трубки и из прямоточного водовода с водозаборным устройством и соплом. Всего создано и испытано шесть ЭО ИДГРД разных конфигураций: пять в бесклапанном исполнении и один с механическим клапаном.

Рис. 4. Схема экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя

Компоненты топлива — горючее (бензин) и окислитель (кислород) — подаются в импульсно-детонационную трубку раздельно. Чтобы исключить преждевременное воспламенение топливной смеси, непосредственно перед ее подачей в трубку кратковременно подается продувочный газ — азот.

Система зажигания состоит из электронного модуля зажигания и двух автомобильных свечей. Система управления включает блок управления и исполнительные устройства — электромагнитные клапаны подачи кислорода и азота, форсунки и модуль зажигания. Программное обеспечение блока управления позволяет задавать интервалы подачи топливных компонентов, продувочного газа и импульса зажигания .

Для организации быстрого перехода горения в детонацию и образования детонационной волны в импульсно-детонационной трубке установлены турбулизаторы-завихрители. Трубка изгибается, так что донорная детонационная волна выходит в сопло водовода соосно (параллельно) потоку воды и, трансформируясь в ударную волну, передает воде запасенное количество движения.

Для проведения огневых испытаний ЭО ИДГРД изготовлен испытательный стенд. Схема испытательного стенда — бассейна с системой создания затопленной струи воды — представлена на рис. 5. Для измерения тяги используется тягоизмерительная рама с датчиком усилия (рис. 6). При обтекании ЭО струей воды без подачи топливных компонентов показания датчика усилия принимаются за ноль, а при работе ЭО датчик измеряет тягу.

Рис. 6. Экспериментальный образец прямоточного импульсно-детонационного гидрореактивного движителя на тягоизмерительной раме

Фото: Сергей Фролов

Рис. 5. Схема испытательного стенда

Система создания затопленной струи включает мотопомпу, а также приемный и подающий водоводы. Вода засасывается в мотопомпу через приемный водовод и вводится обратно в бассейн в виде затопленной струи через подающий водовод. Выходной диаметр сопла подающего водовода практически совпадает с входным диаметром водозаборного устройства ЭО, так что через него проходит большая часть водяного потока, и лишь небольшая часть обтекает ЭО снаружи. Таким образом, испытания проводятся в условиях, когда внешним гидродинамическим сопротивлением можно пренебречь.

Читать еще:  Faw 1041 сколько масла в двигателе

На рис. 7 показаны примеры записей датчика усилия при работе ЭО ИДГРД с частотой 1 и 20 Гц. Экспериментальные записи мгновенной тяги очень похожи на расчетные (см. рис. 3), причем средняя тяга в эксперименте также существенно положительна.

Рис. 7. Измерения мгновенной тяги при работе экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя с частотой 1 Гц (сверху) и 20 Гц (снизу)

На рис. 8 показана итоговая экспериментальная зависимость основного показателя энергоэффективности движителя — удельного импульса тяги — от рабочей частоты для всех испытанных ЭО ИДГРД. Видно, что с увеличением рабочей частоты удельный импульс тяги в среднем снижается от

1000 с при частоте 1 Гц до

300 с при 20 Гц, причем при частоте 10 Гц эксперимент хорошо согласуется с расчетом (см. рис. 3). При этом средняя измеренная тяга возрастает с увеличением рабочей частоты от

10 Н при частоте 1 Гц до

40 Н при частоте 20 Гц. Как и в расчете, при экспериментальном определении тяги и удельного импульса первые рабочие циклы не учитывались. В отдельных сериях испытаний показано, что удельный импульс тяги возрастает с увеличением скорости набегающего потока. Это связано с улучшением наполнения водовода водой перед следующим рабочим циклом. Следует подчеркнуть, что во всех испытаниях начальное давление топливной смеси в импульсно-детонационной трубке было близким к атмосферному .

Рис. 8. Измеренные зависимости удельного импульса тяги экспериментального образца прямоточного импульсно-детонационного гидрореактивного движителя от рабочей частоты (разные значки для разных образцов)

Отдельно отметим низкий уровень шума при работе ИДГРД и практически полное отсутствие вредных веществ в выхлопных газах. Низкий уровень шума связан с быстрым затуханием ударных волн в струе пузырьковой среды, а отсутствие вредных веществ — с использованием детонационного горения топлива, при котором высокотемпературные химические превращения происходят в режиме самовоспламенения с очень большой скоростью и высокой полнотой реакции.

Таким образом, впервые в мире спроектированы, изготовлены и испытаны ЭО движителя нового типа для скоростного водного транспорта — прямоточного ИДГРД с прямым преобразованием химической энергии топлива в движение воды.

Испытания проведены на специально разработанном стенде, позволяющем создавать набегающий поток воды со скоростью до 10 м/с. Для лучших образцов движителя экспериментально получены удельные импульсы тяги на уровне 1400 с при низкой рабочей частоте (1 Гц) и 400 с при высокой рабочей частоте (20 Гц). То есть удельный импульс оказался значительно выше, чем у современных жидкостных ракетных двигателей с высоким давлением в камере сгорания (до 200-300 атм.).

Создание практического ИДГРД должно стать одной из приоритетных задач для отечественного скоростного флота. Но новый движитель может использоваться и на тихоходных судах, особенно на мелководье и в арктических водах, где ледяная шуга вызывает эрозию гребных винтов. Он отличается энергоэффективностью, простотой конструкции, отсутствием видимых ограничений по быстроходности, чистотой выхлопных газов и низкой шумностью. Для него также характерны: простота регулирования тяги за счет изменения рабочей частоты, простота масштабирования тяги за счет укрупнения и/или изменения количества импульсно-детонационных трубок, простота регулирования вектора тяги без использования поворотных рулей, а также способность работать на любом топливе, причем при использовании воздуха в качестве окислителя.

Сергей Фролов, доктор физико-математических наук, Институт химической физики им. Н.Н. Семенова РАН, профессор НИЯУ-МИФИ

(По материалам проекта Минобрнауки «Разработка технологии создания гидрореактивной тяги в водометных двигателях высокоскоростных водных транспортных средств и создание стендового демонстрационного образца гидрореактивного импульсно-детонационного двигателя»).

*О демонстрационном образце ракетного двигателя с детонационным горением, использующем цикл Зельдовича, «Наука» рассказывала в февральском номере.

PDF-версия

  • 32
  • 33

В зависимости от области применения и конструкции гидродинамические подшипники могут быть разного размера:

  • Для компьютерных кулеров и винчестеров;
  • Для промышленного оборудования.

Для кулеров компьютеров и видеокарт предназначен специальный гидродинамический подшипник размером 25х25х10 мм. Скорость вращения до 13000 об/мин. Срок службы 40 тыс. часов.

В жестких дисках устанавливаются подшипники размером 28,5х19 мм шириной 9 мм. Число оборотов от 4200 до 10000 об/мин.

Гидродинамический подшипник для промышленного использования состоит из стационарной наружной обоймы, имеющей четыре точки крепления к станине и вращающуюся внутреннею. Размер устанавливаемого вала может находится в диапазоне от 80 до 250 мм.

Компания УкрЗахидПостач предлагает подшипники и приводные ремни всех типоразмеров и в любом количестве. Прямое сотрудничество с мировыми брендами позволяет поставлять любые подшипники по самым низким ценам.

Гидродинамический двигатель что это

Продукты от экспертов в области смазочных материалов для профессиональной аудитории B2B-сектора

Охлаждающие жидкости/антифризы PETROLUBE являются аналогами известных высококачественных импортных антифризов последнего поколения.

Продукты на основе самых чистых в мире базовых масел со степенью очистки 99,9%

— Один из крупнейших производителей смазочных материалов в Северной Америке

— Самые чистые базовые масла в мире

— Мировой лидер в области разработки смазочных материалов

— Международная гарантия на смазочные материалы

Специальные жидкости для любой технологической операции в металлообработке от эксперта отрасли

— Ведущий мировой поставщик технологических жидкостей для металлообработки

— Уникальный ассортимент технологических жидкостей для металлургии

— Технологические жидкости с увеличенным интервалом замены

Передовые технологии аэрокосмической отрасли в уникальных смазочных материалах на основе перфторполиэфира (PFPE)

— Более чем 200-летний опыт в химической промышленности

— Первые в мире смазочные материалы на основе перфторполиэфира

— Смазочные материалы для работы в предельных температурах

Трение — основная причина износа двигателя. Гильзы цилиндров, поршни, кольца, подшипники — все подвержено этому процессу. Один из способов защитить узлы двигателя от трения — использовать подходящее высоковязкое моторное масло для форсированных двигателей. Однако преимущества эффективной защиты оборачиваются снижением экономии топлива. Значит, главная цель — найти масло, которое будет обладать сразу двумя этими преимуществами.

В то время как стандарты качества масел для сервисной заливки устанавливает Ассоциация европейских автопроизводителей (АСЕА), не стоит ограничиваться простым следованием их требованиям. На практике очень трудно проверить топливноэкономичные свойства разных моторных масел, так как на этот показатель влияют самые различные факторы: стиль вождения, разные маршруты, погодные условия, нагрузки и т.д.

Так как же выбрать правильное масло, которое и будет способствовать экономии топлива, и в то же время эффективно защищать двигатель?

Начнем с так называемой кривой Штрибека (или диаграммы Герси-Штрибека).

Что происходит, когда вы заводите двигатель?

Кривая Штрибека обычно используется, чтобы объяснить смену режимов смазки с учетом трения. Эта диаграмма показывает, как изменяется режим смазки двигателя непосредственно после запуска. При запуске двигателя наблюдается граничная смазка, когда поверхности двигающихся частей находятся в непосредственном контакте. Слой масла между ними минимален, или полностью отсутствует.

Читать еще:  Чем определить обороты двигателя на валу

Несомненно, в данном случае изнашивание двигателя может быть чрезмерным.

Затем граничная смазка сменяется фазой смешанной смазки, когда поверхности деталей частично контактируют между собой, то есть они не полностью разделены. На этом этапе, износ двигателя обычно остается в приемлемых пределах.

Однако при достижении определенной скорости условия меняются, и наступает гидродинамический режим смазки. Теперь смазочный материал полностью разделяет поверхности трения.

Так как наибольшая опасность изнашивания двигателя возникает при режиме граничной смазки, необходимо, чтобы масло, как можно быстрее «дотекло» до точек смазки особенно при холодном запуске двигателя.

Как на трение воздействует прокачиваемость масла?

Прокачиваемость показывает, насколько легко масло течет через двигатель после его запуска. Чем меньше масло сопротивляется прокачиванию (то есть чем меньше динамическая вязкость масла в сП), тем легче оно течет. Эффективная прокачиваемость при низких температурах может сократить время, в течение которого между основными узлами двигателя сохраняются режимы граничной или смешанной смазки. Причина в том, что это помогает сократить тот период, в течение которого сохраняются зоны высокого трения, а эффективная низкотемпературная прокачиваемость моторного масла может помочь в снижении износа двигателя при запуске.

Определить, насколько легко будет прокачиваться масло в двигателе после холодного запуска, можно при помощи теста на прокачиваемость на миниротационном вискозиметре (MRV). Чем ниже показатель, тем меньше масло сопротивляется течению и тем быстрее масло прокачивается к движущимся узлам. Это особенно важно для эксплуатации в условиях холодной погоды, когда важна эффективная защита двигателя.

Благодаря превосходной прокачиваемости при низких температурах моторное масло DURON UHP E6 10W-40 способно сохраняться эффективность при температуре до -35 °C, что соответствует требованиям к низкотемпературной прокачиваемости для моторного масла для форсированных двигателей классов вязкости 5W-XX, и отвечает стандарту ACEA, в котором установлен максимальный предел в 60 000 сП.

Как прокачиваемость влияет за эффективность масла?

Моторное масло для форсированных двигателей, обладающее эффективной низкотемпературной прокачиваемостью, как, например, DURON, обладает существенными преимуществами по сравнению с маслами, у которых такая вязкость выше:

  • оно быстрее обеспечивает защиту узлов двигателя, снижая тем самым износ;
  • уменьшает зоны граничной и смешанной смазки, чем продлевает ресурс двигателя.

В испытания на миниротационном вискозиметре DURON UHP E6 10W-40 демонстрирует лучшие среди конкурентных аналогов результаты и обладает отличной низкотемпературной прокачиваемостью, которая помогает уменьшить граничное и полужидкостное трение поверхностей.

Для таких инновационных моторных масел, как DURON UHP E6 10W-40, требуется меньше энергии, чтобы течь через весь двигатель, и поэтому оно может способствовать тому, чтобы двигатели дольше сохраняли эффективные рабочие характеристики, обеспечивая большую экономию топлива и снижая эксплуатационные затраты.

Геометрические характеристики подшипников скольжения

Масляный зазор – это основной геометрический параметр подшипников скольжения. Он равняется разнице между внутренним диаметром подшипника и диаметром вала (внут­ренний диаметр подшипника измеряется под углом 90° к линии, разделяющей верхний и нижний вкладыши).

Величина масляного зазора – очень важный показатель. Большой зазор приводит к увеличению потока масла, что снижает его нагрев в подшипнике, однако вызывает неоднородное распределение нагрузки (она концентрируется на меньшей площади поверхности и увеличивает вероятность разрушения вследствие усталости). Также большой зазор производит значительную вибрацию и шум. А слишком маленький зазор вызывает перегрев масла и резкое падение его вязкости.

Типичные величины масляного зазора С: для пассажирских автомобилей Cмин = 0,0005D, Cмакс = 0,001D, для гоночных автомобилей Cмин = 0,00075D, Cмакс = 0,0015D (где D – диаметр вала).

Эксцентриситет является мерой, определяющей некруглость подшипника. Действительно, внутренняя поверхность подшипника не является абсолютно круглой. Она имеет форму, напоминающую лежащий на боку лимон. Это достигается за счет переменной толщины стенки подшипника, имеющей максимальное значение (Т) в центральной части и постепенно уменьшающейся в направлении стыка.

Принято измерять минимальное значение толщины (Te) на определенной высоте h для того, чтобы исключить зону выборки в области стыка. Разница между максимальным и минимальным значениями толщины называется эксцентриситетом: Т – Те.

Эксцентриситет, образованный переменной толщиной стенки вкладыша, добавляется к эксцентриситету, вызванному смещением вала относительно центра подшипника. Наличие эксцентриситета позволяет стабилизировать гидродинамический режим смазки за счет создания масляного клина с большим углом схождения. Рекомендуемые величины эксцентриситета: для пассажирских автомобилей 5–20 мкм, для гоночных автомобилей 15–30 мкм.

Посадочный натяг необходим для обеспечения надежной посадки подшипника в гнезде. Прочно посаженный подшипник имеет равномерный контакт с поверхностью гнезда – это предотвращает смещение подшипника во время работы, обеспечивает максимальный отвод тепла из области трения и увеличивает жесткость гнезда. Поэтому наружный диаметр подшипника и его периметр всегда больше диаметра гнезда и его периметра.

Поскольку прямое измерение наружного периметра подшипника – трудная задача, обычно измеряется другой параметр: высота выступа стыка (выступание). Высота выступа стыка равна разнице между наружным периметром половины подшипника и периметром половины гнезда.

Проверяемый вкладыш устанавливают в измерительный блок и прижимают с определенным усилием F, величина которого пропорциональна площади сечения стенки подшипника. Оптимальная величина высоты выступа стыка зависит от диаметра подшипника, жесткости и теплового расширения гнезда и температуры. Типичные значения высоты выступа стыка для подшипников диаметром 40–65 мм: для пассажирских автомобилей 25–50 мкм, для гоночных автомобилей 50–100 мкм.

Несмотря на самые совершенные конструкцию, материалы и технологии, в эксплуатации ДВС встречаются случаи износов и повреждений подшипников. Чтобы найти и устранить их причины, знание конструкции подшипников необходимо, но недостаточно. Об этом – в следующей статье.

Модернизация диска Фарадея: Создание эффективных униполярных генераторов

Униполярный генератор, динамо машина, диск Фарадея: не важно, как вы его называете, в любом случае, униполярный генератор — это интересное устройство. В отличии от большинства других устройств того же назначения, униполярные генераторы способны вырабатывать большой ток при низком напряжении и выделять большое количество электроэнергии. Из-за таких характеристик, учёные работали над улучшением этого устройства с момента его изобретения. Вы также можете провести анализ рабочих характеристик униполярного генератора с использованием программного обеспечения COMSOL Multiphysics®.

Краткая история униполярных генераторов

Спустя 10 лет после прорыва в области электродвигателей в 1831 году Майкл Фарадей создал свой первый генератор. Первая установка (которую позже назвали униполярным генератором) была очень простой. Она состояла из медного диска, который вращался между полюсами постоянного магнита. Несмотря на то, что генератор Фарадея успешно демонстрировал принцип действия электромагнитной индукции, на практике он был слишком неэффективен из-за больших потерь и возникновения противотоков.

Читать еще:  Электролитические конденсаторы для работы двигателя


Схематичное изображение одного из первых униполярных генераторов, также известного, как диск Фарадея. Изображение имеется в свободном доступе в США, взято из Wikimedia Commons.

На протяжении многих лет учёные пытались улучшить производительность униполярных генераторов. Одним из самых известных примеров является разработанная Николой Теслой конструкция, в которой металлический ремень разделял параллельные диски на параллельных валах. Такая конструкция помогла уменьшить потери на трение, что значительно повысило эффективность устройства.

В 1950-е годы было обнаружено, что униполярные генераторы отлично очень полезны для импульсных силовых установок, так как они могут запасать энергию в течении длительного периода и практически мгновенно выделять её. Данное открытие возобновило интерес к генераторам, а учёные начали создавать масштабные конструкции генераторов. Один из них был создан сэром Майклом Олифантом в австралийском Национальном университете. Этот огромный генератор использовался на протяжении 20 лет и мог выдавать ток до 2 МА.


Некоторые элементы созданного сэром Олифантом униполярного генератора, который был разобран и выставлен на всеобщее обозрение. Изображение предоставлено Martyman, взято из англоязычной Википедии. Доступно по лицензии CC BY-SA 3.0 из Wikimedia Commons.

Не смотря на то, что униполярные генераторы прошли долгий путь и назывались различными именами изобретателей, учёные и инженеры до сих пор продолжают работать над улучшением производительности этих устройств. Одним из подходов к такой модернизации, конечно, является численное электродинамическое моделирование…

Моделирование простого униполярного генератора с использованием модуля AC/DC пакета COMSOL Multiphysics®

Давайте рассмотрим учебный пример, в котором представлена простая 3D модель униполярного генератора. Он состоит из вращающегося диска радиусом 10 см, который помещён в однородное магнитное поле величиной 1 Тл. Медный проводник соединяет край диска с его центром, чтобы создать замкнутую цепь для протекания тока, вызванного вращением проводника в постоянном магнитном поле (Lorentz current).


Геометрия модели униполярного генератора.

Обратите внимание, что угловая скорость диска — 1200 об/мин, а протекающий через проводник ток равен примерно 45.16 кА. Для моделирования вращающегося диска можно использовать узел Lorentz term (вклад силы Лоренца) по двум причинам:

  1. В диске нет магнитных источников, которые вращаются вместе с ним
  2. Диск ничем не ограничен и направление его движения не изменяется

В данном случае распределение тока не изменяется при вращении диска.

Анализ результатов электродинамического расчета

После проведения стационарного расчёта можно проанализировать распределение тока в диске и проводнике. Анализируя полученные результаты для нормы плотности тока и его направления, вы можете найти способы улучшения конструкции униполярного генератора.

Норма плотности тока (слева) и направление тока (справа) в медном проводнике и в диске.

Более того, можно изучить влияние магнитного поля, например, на вращение. Ниже приведён график распределения общей и индуцированной магнитной индукции в системе.


Из векторной диаграммы можно заметить, что униполярный генератор влияет на магнитное поле вокруг (возмущает его). Скорость колеса изображена бирюзовыми стрелками на поверхности.

Резистивные потери играют ключевую роль в эффективности таких генераторов, поэтому важно их минимизировать. На графике ниже продемонстрированы расчетные потери в проводящих частях генератора, которые легко получить в результате моделирования.


Резистивные потери в диске и в проводнике.

Используя электродинамическое моделирование, инженеры могут модернизировать конструкции униполярных генераторов, улучшать их производительность путём уменьшения потерь на трение или изменения распределения магнитного поля.

Дальнейшие шаги

Чтобы скачать учебный пример, представленный в этой заметке, нажмите на кнопку ниже. Вы окажетесь в Галерее приложений, где сможете войти в свою учетную запись COMSOL Access и загрузить MPH-файл, а также ознакомиться с пошаговыми инструкциями по сборке модели.

Преимущества новинок

Покрытие Antifinger

Все модели изготовлены из нержавеющей стали высокого качества со специальным защитным покрытием от отпечатков пальцев. Это упрощает уход, техника всегда выглядит опрятно.

Таймер и функция Refresh

Таймер автоматического отключения на 10, 20 или 30 минут дает возможность оставить прибор работать еще некоторое время после того, как вы закончили готовку. Функция Refresh позволяет обновлять воздух в помещении, вытяжка включается каждый час на пять минут.

Автоматический режим работы AdaptTech

Сенсорные датчики определяют интенсивность испарений и регулируют мощность работы двигателя, а затем отключают его.

LED освещение

Светодиодная подсветка приобретает все большую популярность, она служит в 30 раз дольше, чем галогеновые лампы, и потребляет в 10 раз меньше электроэнергии. Приборы с LED относятся к классу энергопотребления A, в то время как модели с галогенным освещением — к классам F и G.

Новое поколение фильтров Adapt air 2

Конструкция Adapt air запатентована концерном Gorenje. Обновленные фильтры отличаются увеличенной площадью забора воздуха, который равномерно распределяется по всей поверхности, поэтому решетка не так быстро загрязняется и ее можно мыть намного реже. В т-образных и островных моделях уменьшен вес ламелей, которые даже в нерабочем состоянии расположены под углом 45°С, что увеличивает эффективность всасывания. На всех моделях Advanced и Superior удалось добиться показателей гидродинамической эффективности класса А.

Алюминиевые жировые фильтры за счет специальной полиуретановой пены задерживают до 95% частичек жира. Поэтому класс эффективности фильтрации жиров в вытяжках нового поколения — B, предыдущего — D и E.

Устройство для гидродинамической промывки труб ROM COMPACT PRO

Установка ROM COMPACT PRO идеальна для выполнения сверхсложных прочистных работ. Благодаря относительно небольшому весу (210 кг), машина обладает превосходной маневренностью и легка в транспортировке. Ее можно разместить практически на любом автомобиле.

Производитель техники – ROM BV (Голландия). Он предлагает две линейки гидродинамических устройств:

  • COMPACT;
  • COMPACT PRO.

Агрегаты серии COMPACT обладают особым преимуществом – компактностью. Поэтому для их перевозки достаточно багажника легковой машины. Установки серии COMPACT PRO превосходят предыдущую серию по количеству дополнительных опций.

Вся техника производителя ROM BV комплектуется дизельными двигателями Kubota мощностью 23,5 кВт. В стандартной комплектации установлены цистерны для воды объемом 650 л. Но по желанию заказчика, их емкость может быть увеличена.

Основной элемент гидродинамических устройств COMPACT PRO – поршневой насос фирмы Speck. Его рабочие характеристики:

  • максимальное давление 200 бар;
  • производительность 60 л/мин.

Любое гидродинамическое устройство нуждается в регулярном профилактическом обслуживании. Для аппаратов, контактирующих с жидкостями, недопустимо проникновение в рабочую камеру насоса абразивных веществ любого размера. Для предотвращения этих неприятностей необходимо использовать специальные фильтры для очистки воды и периодически выполнять их промывку под струей проточной воды.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector